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ABSTRACT
In this paper, we introduce a model for the redistribution and interaction of point radiation defects between 
themselves, as well as their simplest complexes in a material, taking into account the experimentally 
non-monotonicity of the distribution of the concentration of radiation defects. To take into account 
this nonmonotonicity, the previously used model in the literature for the analysis of spatiotemporal 
distributions of the concentration of radiation defects was supplemented by the concentration dependence 
of their diffusion coefficient.
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INTRODUCTION

In the present time, the influence of different types of radiation processing on semiconductors is intensively 
analyzing.[1-3] Based on the analysis, several recommendations to increase the radiation resistance have 
been formulated.[4-6]

In this paper, we analyze redistribution and interaction between point radiation defects, as well as their 
simplest complexes in materials after ion implantation. A modification of the previously proposed 
model[7] describing the redistribution and interaction of radiation defects between themselves is proposed 
with the aim of taking into account the experimentally revealed nonmonotonicity of the distribution of 
the concentrations of these defects.[8]

METHOD OF SOLUTION

We determine spatiotemporal distributions of concentrations of point defects by the solution of the 
following system of equations.[7,9]
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Here, I (x, t) and V (x, t) are the spatiotemporal distributions of concentrations of interstitials and 
vacancies. The first term in the right-hand side of Eqs. (1) describe the diffusion of point defects with the 
diffusion coefficient, which depends on temperature and concentration of point defects. The dependence 
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could be approximated by the following relation Dp (I, V, T) = D0 [1+a×I (x, t)/I *+b×V (x, t)/V *], 
p = I,V. The second term on the right-hand side of Eqs. (1) describes the generation of the simplest 
complexes of radiation defects (divacancies and analogous complexes of radiation defects).[7] The third 
term on the right-hand side of Eqs. (1) describes the recombination of point defects.
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We transform Eqs. (1) to the following integral form,
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Now, we will solve Eqs. (1a) by the method of averaging of function corrections,[10] with decreasing 
quantity of iteration steps.[11] We used solutions of Eqs. (1) without nonlinear terms and averaged 
diffusion coefficients D0IV as initial-order approximations of solutions of Eqs. (1a). These initial-order 
approximations could be solved by standard Fourier approach[10,11] and could be written as:
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series into Eqs. (1a) gives us a possibility to obtain the first-order approximations of concentrations of 
point radiation defects in the following form:
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We determine the second and highest orders of approximations of concentrations of point radiation 
defects framework standard iterative procedure of method of averaging of function corrections.[10] In 
this case, nth-order approximations of concentrations of defects will be determined by the following 
replacement I (x, t)→αnI+In-1(x, t), V (x, t)→α nV+Vn-1(x, t) in the right sides of Eqs. (1a), where αnI 
and αnV are the average values of the considered approximations. In this situation, the second-order 
approximations of concentrations of point defects could be written as:
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Where Θ is the continuance of observation of the change in the concentration of defects with time.
Substitution of the appropriate approximations of concentrations of point defects into above relations 
leads to the following relations:
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Equations for concentrations of simplest complexes of point defects (divacancies ΦV (x,t) and diinterstitials 
ΦI (x, t)) could be written as:
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Here, DΦr (T) are the diffusion coefficients of the above complexes of radiation defects; kr (T) are 
the parameters of decay of the above complexes. To simplify the solution of the above equations, we 
transform them to the following integral form:
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Now, we solve systems of Eqs. (3a) by the method of averaging of function corrections with decreasing 
quantity of iteration steps. We used solutions of Eqs. (3) without nonlinear terms and averaged 
diffusion coefficients D0IV as initial-order approximations of solutions of Eqs. (3a). These initial-order 
approximations could be solved by standard Fourier approach and could be written as:

( )
2 2

0 0
0 2

1
, cos exp

2
∞

Φ Φ
Φ

=

  Φ = + −      
∑I I

II n
n

F n D tn x
x t F

L L
,

( )
2 2

0 0
0 2

1
, cos exp

2
∞

Φ Φ
Φ

=

  Φ = + −      
∑V V

VV n
n

F n D tn x
x t F

L L
.

Here, ( )
0

2 ,0 cos 
Φ

 = Φ   ∫I

L

n I

n v
F v d v

L L
, ( )

0

2 ,0 cos 
Φ

 = Φ   ∫I

L

n I

n v
F v d v

L L
. Substitution of the above 

series into Eqs.(3a) gives us a possibility to obtain the first-order approximations of concentrations of 
point radiation defects in the following form:
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We determine the second and highest orders of approximations of concentrations of simplest complexes 
of point radiation defects framework standard iterative procedure of method of averaging of function 
corrections.[10] In this case, nth-order approximations of concentrations of complexes of defects will 
be determined by the following replacement: ΦI (x,t)→αnΦI+ΦIn-1 (x,t), ΦV (x,t)→αnΦV+ΦVn-1 (x,t) in the 
right sides of Eqs. (3a), where αnI and αnV are the average values of the considered approximations. In 
this situation, the second-order approximations of concentrations of complexes of point defects could be 
written as,
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We determine spatiotemporal distribution of temperature, generated during generation of radiation 
defects due to radiation processing, by the solution of the following equation:
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temperature, heat conduction coefficient could be approximated by the following function: λ(T)=λ0{1+µ 
[Td/T(x,t)]ϕ}. In the same area of temperatures, one can consider the following relation: c(T) ≈ c0. The 
Eq. (5) is complemented by the following boundary and initial conditions:
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We solved the Eq. (6b) by method of averaging of function corrections with a decreased quantity 
of iterative steps. Framework the approach we used solutions of linear Eqs. (5) with averaged heat 
diffusion coefficients λ0 as initial-order approximations of solutions of Eqs. (7b). These initial-order 
approximations could be solved by standard Fourier approach and could be written as:
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We determine the second and highest orders of approximation of temperature framework standard iterative 
procedure of method of averaging of function corrections.[10] In this case, nth-order approximation of 
temperature will be determined by following replacement: T (x, t)→αnT+Tn-1 (x,t) in the right sides of 
Eqs. (7b), where αnT is the average value of the considered approximation. In this situation, the second-
order approximation of temperature could be written as:

T x t T
c

T x t
T x

x
d Td T

t

d2 0

0

2 1

2

1

2

0

0

2

, ,
,( ) = + ( ) 

∂ ( )
∂

−∫µ λ φ α
τ

τ µ λ φφ φ

cc

T x

x
d

t

0

1

2

0

1

∂ ( )
∂






















∫

,τ
τ

φ

.



Pankratov: On prognosis of transport of radiation defects

AJMS/Jul-Sep-2019/Vol 3/Issue 3 77

Not yet known average value α2T by solution the following equation:
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The value of this average value depends on the parameter Φ, determined by the experimental data.

DISCUSSION

In this paper, we analyzed spatiotemporal distribution of the concentrations of radiation defects in 
doped with ion implantation material. Figure 1 shows the distribution of the concentration of point 
radiation defects for two doses: 5×1014 cm−2 (curves 1) and 5×1015 cm−2 (curves 2). The solid lines are 
the calculated curves, and the dashed lines are the experimental curves.[8] According to the experimental 
data, the concentration of defects increases to the irradiated sample boundary while having a maximum 
in the depth of the sample. Apparently, an increase in the concentration of defects with approach to the 
irradiated surface is a consequence of a large number of defects in the near-surface region at the initial 
stage of doping. Over time, the defects recombine among themselves and diffuse from the near-surface 
region. To account for these changes, the concentration dependence of the defect diffusion coefficient 
was used.

CONCLUSION

In this paper, we introduce a model for the redistribution and interaction of point radiation defects between 
themselves, as well as their simplest complexes in a material, taking into account the experimentally non-
monotonicity of the distribution of the concentration of radiation defects. To take into account this non-
monotonicity, the previously used model in the literature for the analysis of spatiotemporal distributions 
of the concentration of radiation defects was supplemented by the concentration dependence of their 
diffusion coefficient.

Figure 1: The distribution of the concentration of radiation defects at a dose 5×1014 cm−2 (curve 1) and a dose 5×1015 cm−2 
(curve 2). Solid curves are the calculated results. Dotted curves are experimental results
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