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ABSTRACT
This work produces the authors’ own concept for the definition of extension on R alongside a basic 
result he tagged the basic extension fact for R. This was continued with the review of existing definitions 
and theorems on extension prominent among which are the Urysohn’s lemma and the Tietze extension 
theorem which we exhaustively discussed, and in conclusion, this was applied extensively in resolving 
proofs of some important results bordering on the comparison principle of Lyapunov stability theory 
in ordinary differential equation. To start this work, an introduction to the concept of real numbers was 
reviewed as a definition on which this work was founded.
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INTRODUCTION

It is a well-known fact that the set of real Numbers 
is closed with the basic operations of addition and 
multiplication in view of this, we develop the basic 
elementary topology of the set using the following 
fundamental definitions and theorems.

THE REALS (THE SET, R)

The reals or the set R is a field which is a non-
empty set that has the following properties.
A. To every pair x y,  of scalars, there exists a 

corresponding scalar x y+  called the sum of 
x  and y  such that

 i. Addition is commutative
 ii. Addition is associative
 iii.  There exists a unique number or scalar 0 

such that x x+ =0
 iv.  For every element in the field, there exists an 

element ( )− ∈x F such that x x+ −( ) = 0 .
B. To every pair x  and y  of scalars, there 

corresponds a scalar xy  called the product of 
x  and y  such that

 i. Multiplication is commutative
 ii. Multiplication is associative
 iii.  There exists a unique non-zero scalar 1 

such that x x*1=
 iv.  To every non-zero scalar x , there 

corresponds a unique scalar 1
x

 such that 

x
x
*
1  = 1.

C. Multiplication is distributive under addition, 
i.e., x y z xy xz+( ) = + .

Definition 1.1[1]

Any subset of R which satisfies the conditions of an 
extension in R as given in the definition below is said 
to be an extendable subset of R,

Definition 1.2[2]

Let X =   be a normal space (in topological sense) 
and let A be any closed subspace of R. A map
f A a b a b: , , ,→[ ] [ ] =   is called an extension of

   A  if
i. f  is continuous

ii. f A a b: ,→[ ] =   such that f f= .
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Theorem 1.1 (Basic Extension Fact for R)[3]

Every compact (closed and bounded) subset of R 
is extendable, but non-compact subsets are non-
extendable (non-continuable)
Proof: Let S  be the compact subset in R. Then, 
for any subset, there exists condition such that 
every sequence in S  has a subsequence that 
converges to a point in S.
Let S  be compact and let Xn{ }  be an arbitrary 
sequence in S  and since any sequence in S  has a 
convergent subsequence, Xnk{ }has convergent 
subsequences. Let that subsequence. X xnk{ }→ *  
and since any convergent sequence in S  has its 
limit in S , x S*∈ .

Now, we show that S  is extendable by definition 
(1.2). Let   be a normal space. Since S  is 
compact, S  is a closed subset of R.
Hence, we define the map f S a b: [ , ]→  =   and 
show that
(i)  f is continuous
(ii)  f: S a b→ [ , ]  =   is such that f f=
(iii)  Let f S: →  be a function and we define 

the function f xn( ) �  such that f x f xn( ) → ( ) , 
for each x xn → . Then, f is continuous and to 
show (ii) since S is a compact subset of   
which is also a normal space, then S is a closed 
set where f (s1) = a and f s bn( ) =  natural 
numbers since the image of a closed set is 
closed, i.e., f a b− ∈1 [ , ]  is closed in S for 
closed set [ , ]a b  in   then f f= . Hence, the 
compact subset of   is extendable because it 
satisfies the conditions of definition (1.2).

(iv)   To prove that a non-compact subset is non-
extendable, we pick S a b= ( ), � or [ , ]b ∞  say, a 
non-compact subset and show f: S a b→ [ , ]  
such that

    i. f is continuous and
    ii. f: S a b→ [ , ]  =   and f = f
This is obvious because though any f defined on 
these sets may be continuous in the set S, they will 
not satisfy condition (ii) since those sets are not 
compact (or closed) and as such no f can operate 
in any non-compact set to secure extension.

RESULTS ON EXTENSION   

Definition 2.1[4]

Given that, one point sets are closed in the set X , 
then X  is said to be regular if for each pair 

consisting of a point x  and a closed set B  disjoint 
from x  such that there exist disjoint open sets 
containing x  and B, respectively. On the other 
hand, the space X  is said to normal if for each pair 
A B,  of disjoint closed sets of X , there exist 
disjoint open sets containing A  and B , respectively.
Hence, a regular space is Hausdorff and a normal 
space is regular A  space X  is said to be completely 
normal if every subspace of X  is normal.

Lemma 2.1[5]

Let X  be a topological space and let one point 
sets in X  be closed.
(a) X  is regular if and only if given a point x X∈  

and a neighborhood U  of x  there is a 
neighborhood V  of x  such that V U⊂ .

(b) X  is normal if and only if given a closed set 
A , and an open set U  containing A , there is 
an open set V  containing V  such that V U⊂ .

Proof: (a) Suppose that X  is regular and suppose 
that the point x  and the neighborhood U  of x  are 
given. Let B X U= − ; then, B is a closed set. By 
hypothesis, there exist disjoint open sets V  and 
W  containing x  and B , respectively. The set V  
is disjoint from B  since if � �y∈B, the set W  is a 
neighborhood of y  disjoint from V . Therefore, 
V U⊂  as desired.
To prove the converse, suppose the point x  and 
the closed set B  not containing x  are given. Let 
U X B= − .
By hypothesis, there is a neighborhood V  of x  
such that V U⊂ .  The open sets V  and X V−  are 
disjoint open sets containing x  and B , 
respectively. Thus, X  is regular.
(b) This proof uses exactly the same argument; 
one just replaces the point x  by the set A  
throughout.

Theorem 2.2[6]

a. Every regular space with a countable basis is 
normal

b. Every metrizable space is normal
c. Every compact Hausdorff space is normal
d. Every well-ordered set X  is normal in the 

order topology.
Proof: (d) Let X  be a well-ordered set. We assert 
that every interval of the form x y,( )  is open in X . 
If X  has a largest element and y  is the element, 
( , )x y  is just a basic element about y. If y  is not 
the largest element of X , then ( , )x y  equals the 
open set ( , )

'x y  where y '  is the immediate 
successor of y.



Emmanuel: On extendable sets in the reals (R)

AJMS/Oct-Dec-2019/Vol 3/Issue 4 41

Now, let A  and B  be disjoint closed sets in X ; 
assume for the moment that neither A  nor B  
contains the smallest element a0  of X .
For each a A∈ ,  there exists a basis element about 
A  disjoint from B ; it contains some interval of 
the form ( , )x a  (Here is where we use the fact that 
is not the smallest element of X ) choose, for each 
a A∈ , such an interval ( , )x aa  disjoint from B . 
Similarly, for each b B∈ , choose an interval 
( , )y b
0

 disjoint from A.
The sets
U U x aa A a= ∈ ( , )  and V V y bb B b= ∈ ( , )

are open sets containing A  and B , respectively; 
we assort they are disjoint for supposing that 
z U V∈  .
Then, z x a y Ba b∈ ( , ) ( , )  for some a A∈  and 
some b B∈ .�
Assume that a b< . Then, if a ≤ yb , the two intervals 
are disjoint, while if a yb< , we have a y bb∈ ( , ) , 
contrary to the fact that ( , )y bb  is disjoint from A . 
Similarly, contradiction occurs ifb a< .

Finally, assume that A  and B  are disjoint closed set 
in X , and A  contains the smallest element a  of X .
The set { }a

0
 is both open and closed in X . By the 

result of the preceding paragraph, there exist 
disjoint open sets U  and V  containing the closed 
sets A –{ }a

0
 and B , respectively. Then, Uv a{ }

0
 

and V  are disjoint open sets containing A  and B, 
respectively.

Theorem 2.2 (The Urysohn’s Lemma)[7]

Let X  be a normal space let A  and B  be disjoint 
closed subsets of X . Let [ , ]a b  be closed interval 
in the real line. Then, there exists a continuous 
map
f X a b: [ , ]→

Such that f x a( ) =  for every x  in A , and 
f x b( ) =  for every x  in B

We now state and prove the very important 
consequence of the Urysohn’s lemma and that is the:

Theorem 2.3 (Tietze Extension Theorem)[8-10]

Let X  be a normal space; A  be a closed subspace 
of X .
a. Any continuous map of A  into the closed 

interval [ , ]a b  of   may be extended to a 
continuous map of all of X  into a b, .[ ]

b. Any continuous map of A  into   may be 
extended to a continuous map of all of X  
into .

Proof: The idea of this proof is to construct a 
sequence of continuous functions Sn  defined on 
the entire space X  such that the sequence Sn  
converges uniformly and such that the restriction 
of Sn  to A  approximates f more closely as n  
becomes large. Then, the limit function 
will be continuous and its restriction to A  will 
equal f.
Step 1: The first step is to construct a particular 
function g defined on all of X  such that g  is not 
too large and such that g  approximates f on the 
set A  to a fair degree of accuracy. To be more 
precise, let us take the case f A r r: [ , ]→ − . We 
assert that there exists a continuous function 
g X: →  such that

1( )
3

g x r≤  for all x X∈ ,

( ) ( ) 2
3

g a f a r− ≤  for all a A∈ ,

The function g  is constructed as follows:
Divide the interval −[ ]r r, �  into three equal 

intervals of length 2
3

r :

I r r
1

1

3
= − −





, , I r r
2

1

3

1

3
= −





, , I r r
3

1

3
= 





,

Let B  and C  be the subsets

B f I= ( )−1
1  and C f I= 1

3
( )

a. Because f is continuous, B  and C  are closed 
disjoint subsets of A. Therefore, they are 
closed in X . By the Urysohn’s lemma function, 
there exists a continuous function

g X r r: ,→ −





1

3

1

3

having the property that g x r( ) = − 1
3

 for each x  

in B  and g x r( ) = 1
3

 for each x  in C.
Then, 1( )

3
g x r≤  for all x. We assert that for each 

a  in A,

g a f a( ) − ( )  ≤ 2
3

r.

There are three cases. If a B∈ , then both f a( )  
and g a( )  belong to I1. If a C∈ , then f a( )  and 
g a( ) � are in I3. And if a B C∉  ,  then f a( )  and 

g a( )  are in I2. In each can g a f a r( ) − <( )
2

3
 

[Figure 1].
Step 2: We now prove part (a) of the Tietze 
theorem. Without loss of generality, we can replace 
the arbitrary closed interval [ , ]a b  of R� by the 
interval −[ ]1 1, .
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Let f X: [ , ]→ −1 1  be a continuous map. Then, f 
satisfies the hypothesis of step 1, with r =1. 
Therefore, there exists a continuous real-valued 
function defined on all of X  such that

1( )
3

g x ≤  for x X∈ ,

f a g a( ) − ( ) ≤ 





'
2

3
 for a A∈ ,

Now consider the function f g− 1 . This function 

maps A into the interval −





2

3
2,  so we can apply 

step1 again, letting r = 2
3

. We obtain a real-valued 

function defined on all of X  such that

1 ( )
3 

g x ≤  ( 2
3

) for x X∈ ,

f a g a g( ) − ≤ 





1 2

2

2

3
( )  for a∈ A,

Then, we apply step 1 to the function f - g1 −  ⋅ ⋅ ⋅ −  
gn  and so on.
At the general step, we have real-valued functions 
f −  g1 ,…, g2  defined on all of X  such that

f a g a g an

n

( ) − − ⋅⋅⋅ − ≤ 





( ) ( )
2

3

n

For a A∈ . Applying step 1 to the function 

− − ⋅⋅⋅−g1  gn , with r
n

= 






2

3
, we obtain a real-

valued function gn+1  defined on all of X  that

g xn+1( ) ≤ 1
3

2

3









n

 for x ∈ X ,

f a g a g an

n

( ) − − ⋅⋅⋅ − ≤ 





+

+

1 1

1

2

3
( ) ( )  for a A∈ ,

By induction, the functions gn  are defined for all n .
We now define
g x g xnn( ) = =

∞∑ ( )
1

For all x  in X . Of course, we have to know that 
this infinite series converges. But that follows 
from the comparison theorem of calculus; it 
converges by comparison with the geometric 
series.
1

3

2

3

1

1









−

=

∞∑
n

n

To show that g  is continuous, we must show that 
the sequence Sn  converges to g  uniformly. This 

fact follows at once from the “Weierstrass M-test” 
of analysis. Without assuming this result, one can 
simply note that if k n> , then

s x s x g xk n ii n

k( ) − =
= +∑( ) ( )

1
≤

1

3

2

3

1

3

2

3

2

3

1

1

1

1







 < 






 = 








−

= +

−

= +

∞∑ ∑
i

i n

k
i

i n

n

Holding n fixed and letting→∞ , we see that

g x s xn( ) − ( ) ≤ 2

3









n

For all x X∈ . Therefore, Sn  converges to g  
uniformly. We show that g a f a( ) = ( )  for a A∈ . 

i3

i2

B

x

3r−

I1

g

r/ 3

Figure 1: Countability and separation axioms
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let S x g xn ii

n
( ) ( )=

=∑ 1
, the nth partial sum of the 

series. Then, g x( )  is by definition the limit of the 
infinite sequence S xn ( )  partial sums. Since for all 
a  in A , it follows that S a f an ( ) ( )→  for all 
a A∈ ; therefore, we have f a( )  for a A∈ .
Finally, we show that g  maps X  into the interval 
−[ ]1 1,  this condition is, in fact, satisfied 

automatically since the series 1
3

2

3
∑







n

converges 
to 1. However, this is just a lucky accident rather 
than an essential part of the proof. If all we knew 
were that g  mapped X  into  , then the map 
r g° , where r : [ , ]→ −1 1  is the map

r y y( ) =  if y ≤1,

r y y
y( ) =  if y  ≥1,

Would be an extension of f mapping x  into −[ ]1 1, .
Step 3: We now prove part (b) of the theorem, in 
which f maps A  into  , we can replace   by the 
open interval ( , )−1 1  since this interval is 
homeomorphic to .
Hence, let f be a continuous map from A  into 
−( )1 1, .  The half of the Tietze theorem already 

proved shows that we can extend f to a continuous 
map g X: [ , ]→ −1 1  mapping X  into the closed 
interval. How can we find a map h carrying X  
into the open interval?
Given g , let us define a subset D  of X  by the 
equation
D g g= −{ }( ) { }( )− −1 1

1 1 .

Since g  is continuous, D  is closed a subset of X . 
Because g a f a( ) = ( )  which is contained in 
( , )−1 1  the set A  is disjoint from D . By the 
Urysohn’s lemma, there is a continuous function 
∅ →[ ]: ,X 0 1  such that ∅( )D  = {0} and 
∅( )A  = {1}. Define

h a x g x( ) = ∅( ) ( )

Then, h is continuous, being the product of two 
continuous functions. Furthermore, h is extension 
of f  since for a  in A ,

h a a g a g a f a( ) = ∅( ) ( ) = ( ) =1 ( )

Finally, h maps all of X  into the open interval 
( , )−1 1 . For if x D∈ , then h x g x( )° ( ) = 0 . 

Moreover, if x D∉ , then g x( ) <1; it follows that 
h x g x( ) ≤ −1 ( ) .

APPLICATION OF EXTENDABLE SETS 
IN   TO THEORY OF THE COMPARISON 
PRINCIPLE IN LYAPUNOV STABILITY

Let x t t t t( ) ∈( ), , ,
0 1

0 ≤ t0  < t1  < °  be a solution 
of the given system of ordinary differential 
equations
X F t x' ( , )=  (3.1)
Then, x t( )  is extendable to the point t t= 1  if and 
only if it is bounded on ( , )t t

0 1
. Again if

x t t t T( ) ∈, ( , )
0 1

, 0 ≤ t0  < T  ≤ +∞  be a solution of 
the system (3.1). Then, x t( )  is said to be “non-
continuable” or “non-extendable” to the right if T  
equals +∞  or if x t( ) � cannot be continued to the 
point T. Moreover, every extendable to the right 
solution of the system 3.1 is part of a non-
continuable to the right solution of the same 
system.

Theorem 3.1

Let x t t t t( ) ∈, ( , )
0 1

 t1  ≥ t0 , an extendable to the 
right solution of the system (3.1), then there exists 
a non-continuable to the right solution (3.1) which 
extends x t( )  that is a solution y t t t( ) , ( , )0 2

 such 
that t2  > t1 , y t t t t( ) ∈, ( , )

0 1
 and y t( )  is non-

continuable to the right (here, t2  may be equal 
to +∞ ).
Proof: It suffices to assume that t0 0> . Let 
Q n= ∞ ×( , )0   and for m = …1 2, , ,  let 

Q t u Q t u m t
mm = ( )∈ ≤ ≥






, ; ,

2 2 1

Then, Q Qm m⊂ +1  and Q Qm =
Furthermore, each Qm  is a compact subset of 
Qx t t t( )∈( )0 1

, ,  0≤ t0 < t1 < +∞  is a solution of 
the system (3.1). Then, x t( )  is extendable to the 
point t t= 1  if and only if it is bounded on ( , )t t

0 1
. 

Hence, a solution y t t t T( ) ∈, ( , )
0

 is non-
continuable to the right if its graph 
t y t t t T, , ( , ))( )( ) ∈

0
 intersects all the sets Qm.

We are going to construct such a solution y t( )  
which is continuable to the right, we may consider 
it defined and continuous on the interval ( , )t t

0 1
.

Now, since the graph
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G t x t t t t= ( )( ) ∈, ; ( , )
0 1

 is compact, there exists an 
integer m  such that G Qmi∈ . If the number α >0 
is sufficiently small, then for every ( , )a u Q∈ , the 
set
M a u t x t a x un

, , ;( ) = ( )∈ − ≤ − <( )+ 1 α α  is 
contained in the set
Qm1 1+ . Let ( , )f t x k≤  on the set Qm+1 , where k  
is a positive constant.
By Peano’s theorem for every point ( , )a u Qm∈

1
, 

there exists a solution z t( )  of the system (3.1) 
which continues x t( )  to the point t qB0 +  and has 
a graph in the set Qm1 1+  but not entirely inside the 
setQm1

. In this set Qm1 1+ , we repeat the continuation 
process as in the set Qm1

. Thus, we eventually 
obtain a solution y t( )  which intersects all the sets 
Qm1

, m< m1  for some m1  and is a continuable 
extension of the solution x t( ).

Theorem 3.2

Let x t t t T t T( ) ∈( ) ≤ < < +∞, , ,
0 0

0  be a non-
continuable to the right solution of 3.1. Then,
limt T T x t→ → + ( ) = +∞
Proof: Assume that, the above assertion is false. 
Then, there exists an increasing sequence tm m{ } =

∞

1
 

such that
t0 ≤ �tm  < �T , limm mt T→∞ =  and limm mx t→∞ ( )  is 

such that x t ym( )→  as m →∞  with y L=  and 
tm  increasing.
Let M  be a compact subset of  + ×n such that 
the point T y,( )  is an interior point of m , then we 
may assume that t t Mm m( )×( )( )∈  for M = …1 2, , ,  
We show that for infinitely many m , there exists 
tm  such that

t T t t x t Mm m m m m< < ( )( )∈+1 , δ  (3.2)

Where, δM  denotes the boundary of M . If this 
was not the case, then there would be ε ∈ ( , )0 T  
such that t x t, ( )( )  belongs to the interior of M  
for all t  withT t T− < <ε . Then, the condition 
which states that if x t t t t t tp( ) ∈( ) < < < +∞, , ,

0 1 1
0  

be a solution of 3.1, then x t( )  is extendable to the 
point t t= 1  if and only if it is bounded on ( , )t t

0 1
 

implies that the extendibility of x t( )  beyond T  is 
a contradiction so let
V t u y t v t u t u n
ε , , , , ( , )( ) ≤ ( )( ) ∈ ×+ 

γ :   + × →n  continuous held for a subsequence, 
i.e., x tm( )  of positive integers satisfying

T t t t x t Mm m m m m< < ( )( )∈, δ  (3.3)

Then, we have
lim , ,m m mt x t T y→∞ ( ) ( ) = ( ) . This is a consequence 

of the fact that t Tm →  as m →∞  assumes and 
the inequality
x t x t N t tm m m m( ) − ≤ −( )( )  where u  is a bound 

for F  on M . However, δM  is a closed set. Thus, 
the point ( , )T y M∈ , a contradiction to our 
assumption and hence the proof.

Theorem 3.3 [On the Comparison Principle 
and Existence of + ]

Let V: � + x R R�n →  be a Lyapunov function 
satisfying
V t u t u t u n, , , ( , )( ) ≤ ( ) ∈ ×+   (3.4)

and V t u( , )→∞  as u →  uniformly with respect 
to t  lying in any compact set.
Here, �γ :  + ×  is continuous and such that for 
every ( , )t u

0 0
∈   + × , the problem

u t u u t u= ( ) + ( ) = +γ ε ε, ,
0 0

 (3.5)

has a maximal solution defined on ( , )t
0
+∞ . Then, 

every solution of 3.1 is extendable ( , )t
0
+∞

Proof: Let ( , )t T
0

 be the maximal interval of 
existence of solution x t( )  of 3.1 and assume that
T < +∞ . Let y t( )  be the maximal solution of 3.1 
with y t V t x t

0 0( ) = ( )( ), .

Then, since Du t t u t t t S S( ) ≤ ( )( ) ∈ +∞( )γ , , , \ :
0

 
is a continuable set… (3.6)
we have

V t x t, ( )( )≤ γ ( ) ( , )t t T∈
0

 (3.7)

On the other hand, since x (t) is non-extendable to 
the right solution and we have
lim
t r

x t
→

( ) = +∞
This implies that V t( )  converges to +∞  as t T→  
but (3.7) implies that
lim ,supV t x r T( )( ) ≤ ( )γ  as t T→  thus T = +∞.

Corollary 3.4

Assume that, there exists α > 0  such that
F t u u( , ) ,≤ ∈ >γ αR�
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Where, γ :  + + +× →  is such that every 
( , )t u
0 0

∈ +  the problem (3.6) has a maximal 
solution defined on t

0
, .∞( )  Then, every solution 

of 3.1 is extendable to +∞
Proof: Here, it suffices to take V t u u,( ) =  and we 
obtain.

V t x t
x t hF t x t x t

h

F t x t t V t x t

hε

γ

, lim
,

( , ( ) , ,

�

( )( ) = ( ) + ( ) − ( )( )

≤ ≤ (

→∞

))( )( )
Provided that α α( ) .t >  Now, let x t t t T( ) ∈, ( , )

0
 

be non-continuable to the right solution of 3.1 
such that  < +∞ . Then, for t  sufficiently close to 
T � from left, we have x t( ) >α .
However, if γ :  + × →  be continuous and 
( , ) ,t x
0 0

∈ ×+   α ∈ +∞( , )o  be the maximal 
solution of (3.6) in the interval ( , )t t

0 0
+α . Let 

V t t: ( , )
0 0

+ →α   be continuous and such that 
u t( )

0
≤ u0  and

Du t t u t t t S( ) ≤ ( )( ) ∈ +∞( )γ , , , \
0

 and S is a 
continuable set
Then, u t S t t t t( ) < ( ) ∈ +, ( , )

0 0
α  which implies 

that every solution x t( )  of (1.1) is extendable.

CONCLUSION

Extension in the Real Number line is extensively 
shown to be real  in this work by the use of 

the Urysohn Lemma as was seen useful in the 
theory of extension of ordinary differential 
Equations vividly expressed in Application 
to the theory of the Comparison Principle in 
Lyapunov Stability.
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