

RESEARCH ARTICLE

On Some Geometrical Properties of Proximal Sets and Existence of Best Proximity Points

S. Arul Ravi, A. Anthony Eldred

Department of Mathematics, St. Joseph's College (Autonomous), Tiruchirappalli, Tamil Nadu, India

Received: 31-12-2019; Revised: 31-01-2020; Accepted: 16-02-2020

ABSTRACT

The notion of proximal intersection property and diagonal property is introduced and used to establish some existence of the best proximity point for mappings satisfying contractive conditions.

Key words: Best proximity point, proximal sets, UC property, proximal intersection property, diagonal property

Mathematics Subject Classifications: MSC 2010, 47H09

INTRODUCTION

Let X be a non-empty set and f be a self-map of X. An element $x \in X$ is called a fixed point of f if f(x) = x. Fixed point theorems deal with sufficient conditions on X and f which ensure the existence of fixed points. Suppose the fixed point equation f(x) = x does not possess a solution, then the natural interest is to find an element $x \in X$, such that x is in proximity to f(x) in some sense. In other words, we would like to get a desirable estimate for the quantity d(x, f(x)).

It is natural that some mapping, especially non-self mappings defined on a metric space (X,d), do not necessarily possess a fixed point that is d(x, f(x)) > 0 for all $x \in X$. In such situations, it is reasonable to search for existence and uniqueness of the point $x \in X$ such that d(x, f(x)) = 0. In other words, one speculates to determine an approximate solution x that is optimal in the sense that the distance between x and f(x) is minimum. Here, the point x is the best proximity point. That is d(x, f(x)) = d(A, B). Where $d(A, B) = \inf \{ d(x, y) : x \in A, y \in B \}$.

Best proximity results is also interesting for the geometrical properties of the underlying space. In Suzuki *et al.*,^[1] UC property was introduced to prove some existence results on best proximity point. In Raj and Eldred,^[2] the author introduced p-property and proved strict convexity is equivalent to p-property.

We introduce proximal intersection property and diagonal property for a pair (A, B) where A and B are nonempty closed subsets of metric space. We show that every pair (A, B) of a real Hilbert space satisfies diagonal property. Then, these properties are used to establish the existence of best proximity point for mapping satisfying some contractive conditions introduced by Wong.^[3]

PRELIMINARIES

In this section, we give some basic definitions and concepts that are related to the context of our main results.

Address for correspondence: Dr. S. Arul Ravi ammaarulravi@gmail.com

Definition 2.1^[4]

Let A and B be nonempty subsets of a metric space (X,d). Then, (A,B) is said to satisfy property UC if the following holds: If x_n and x'_n are sequences in A and y_n is a sequence in B such that $\lim_n d(x_n, y_n) = d(A, B)$ and $\lim_n d(x'_n, y_n) = d(A, B)$, then $\lim_n d(x_n, x'_n) = 0$ holds.

Definition 2.2

Let *A* and *B* be nonempty subsets of a metric space (X,d). Then, (A,B) is said to satisfy proximal intersection property if whenever $A_n \subset A$ and $B_n \subset B$ are a decreasing sequence of closed subsets such that $\delta(A_n, B_n) \rightarrow d(A, B)$. Then $\bigcap A_n = \{x\}, \bigcap B_n = \{y\}$ with d(x, y) = d(A, B).

Remark 2.1

$$d(A,B) = d(\overline{A},\overline{B})$$
 and $\delta(A,B) = \delta(\overline{A},\overline{B})$ where $\delta(A,B) = \sup\{||x-y|| | x \in A, y \in B\}$.

Definition 2.3^[2]

Let X be a metric space and let $f: X \to X$. Then, d_f is the function on $X \times X$ defined by

$$d_{f}(x, y) = \inf \left\{ d(f^{n}(x), f^{n}(y)) : n \ge 1 \right\}, x, y \in X$$
⁽¹⁾

Definition 2.4^[3]

Let A and B be nonempty subsets of a metric space X. We shall use X_d to denote the set

$$\left\{r': for any \, s > r', d\left(x, y\right) - d\left(A, B\right) \in \left[r', s\right] for some \, x \in A, \, y \in B\right\}$$
(2)

Remark 2.2

If $r' \in X_d$, then, there exists $x_n \in A, y_n \in B$ such that $d(x_n, y_n) - d(A, B) \to r'$. Also if $x \in A, y \in B$, then $d(x_n, y_n) - d(A, B) \in X_d$ and if $x_n \in A, y_n \in B$ such that $d(x_n, y_n) - d(A, B) \to r'$ then $r' \in X_d$.

Definition 2.5

Let (A, B) be proximal pair of a metric space X. Then, (A, B) is said to satisfy diagonal property if whenever $s_n, t_n \in A$ and $s'_n, t'_n \in B$ are bounded sequences such that $d(s_n, s'_n) \rightarrow d(A, B)$ and $d(t_n, t'_n) \rightarrow d(A, B)$ then $d(s_n, t'_n) - d(s'_n, t_n) \rightarrow 0$.

Lemma 2.1^[1]

Let A and B be nonempty subsets of a metric space (X,d). Then, (A,B) has the property UC. Let $\{x_n\}$ and $\{y_n\}$ be sequences in A and B, respectively, such that either of the following holds:

$$\lim_{m \to \infty} \sup_{n \ge m} d(x_m, y_n) = d(A, B) \text{ or}$$
$$\lim_{n \to \infty} \sup_{m \ge n} d(x_n, y_n) = d(A, B)$$

Then $\{x_n\}$ is Cauchy.

MAIN RESULTS

Theorem 3.1

Let *A* and *B* be nonempty closed subsets of a complete metric space *X* satisfying UC property. Let A_n, B_n be decreasing sequence of nonempty closed subsets of *X* such that $\delta(A_n, B_n) \rightarrow d(A, B)$ as $n \rightarrow \infty$. Then, $\bigcap A_n = \{x\}, \bigcap B_n = \{y\}$ with d(x, y) = d(A, B) that is (A, B) satisfies proximal intersection property.

Proof

Construct a sequence x_n, y_n in X by selecting $x_n \in A_n, y_n \in B_n$ for each $n \in N$. Since $A_{n+1} \subseteq A_n, B_{n+1} \subseteq B_n$ for all n, we have $x_n \in A_n \subseteq A_m, y_n \in B_n \subseteq B_m$ for all n > m. We claim that x_n is a Cauchy sequence. Let $\epsilon > 0$ be given. Since $\delta(A_n, B_n) \rightarrow d(A, B)$, there exists a positive integer N such that $\delta(A_n, B_n) < d(A, B) + \epsilon$, for all

 $n \ge N$.

Since A_n, B_n are decreasing sequences, we have $A_n, A_m \subseteq A_N$ and $B_n, B_m \subseteq B_N$ for all $m, n \ge N$. Therefore, $x_n, x_m \in A_N$ and $y_n, y_m \in B_N$ for all $m, n \ge N$, and thus we have

$$d(x_n, x_m) \le \delta(A_n, B_n) < d(A, B) + \in \text{ for all } m, n \ge N$$
(3)

Since *A* and *B* satisfy UC property from lemma 2.1 x_n is a Cauchy sequence. There exists $x \in A$ such that $x_n \to x$. Similarly, there exists $y \in B$ such that $y_n \to y$.

We claim that $x \in \bigcap A_n, y \in \bigcap B_n$.

Since A_n and B_n are closed for each $n, x \in A_n, y \in B_n$ for all $n \in N$.

Since $d(x_n, y_n) \rightarrow d(A, B)$ we have d(x, y) = d(A, B).

Finally to establish that x is the only point in $\bigcap A_n$,

If $x_1 \neq x_2 \in \bigcap A_n$, then $d(x_i, y) = d(A, B)$

UC property forces $x_1 = x_2$. Similarly $\bigcap B_n = \{y\}$.

Lemma 3.1

Let *A* and *B* be nonempty closed convex subsets of a real Hilbert space. For every bounded sequence $u_n, v_n \in A$ and $u'_n, v'_n \in B$, we have if $||u_n - v_n||$ and $||u'_n - v'_n|| \to d(A, B)$ then

1)
$$(u_n - v_n) - (u'_n - v'_n) \to 0.$$

2) $\lim_{n \to \infty} (||u_n - v'_n|| - ||v_n - u'_n||) = 0.$

Proof

Therefore,

Let u_n, v_n be sequences in A and u'_n, v'_n be sequences in B such that

$$\|u_n - u'_n\| \to d(A, B) \text{ and } \|v_n - v'_n\| \to d(A, B)$$

$$\tag{4}$$

Let
$$\varepsilon_n = \langle v'_n - u'_n, u'_n - u_n \rangle$$
 (5)

Since *B* is convex,
$$\lambda v'_n + (1 - \lambda)u'_n \in B$$
 for all $0 \le \lambda \le 1$

$$\left\|u_{n}-v_{n}'\right\|^{2} = \left\|u_{n}-u_{n}'\right\|^{2} + \left\|u_{n}'-v_{n}'\right\|^{2} + 2\left\langle u_{n}-u_{n}',u_{n}'-v_{n}'\right\rangle$$
(6)

$$\left\|v_{n} - u_{n}'\right\|^{2} = \left\|v_{n} - v_{n}'\right\|^{2} + \left\|v_{n}' - u_{n}'\right\|^{2} + 2\left\langle v_{n} - v_{n}', v_{n}' - u_{n}'\right\rangle$$
(7)

Using the identity
$$\frac{1}{4} \left(\left\| x + y \right\|^2 - \left\| x + y \right\|^2 \right) = \left\langle x, y \right\rangle$$
(8)

Since $\|u_n - (\lambda v'_n + (1 - \lambda)u'_n)\| \ge d(A, B)$ for all n, $\lim \sup \left(\lambda \|u'_n - v'_n\|^2 + 2\varepsilon_n\right) \ge 0$. Letting $\to 0$ lim $\sup \varepsilon_n \ge 0$. Similarly, $\lim \inf \varepsilon_n \ge 0$.

$$\limsup \langle u_n - u'_n, u'_n - v'_n \rangle \ge 0 \tag{9}$$

$$\liminf \left\langle u_n - u'_n, u'_n - v'_n \right\rangle \ge 0 \tag{10}$$

Let $s_n = u_n - u'_n$ and $s'_n = v_n - v'_n$. Suppose $s_n - s'_n \to 0$ there exists a subsequence n_k such that $||s_{n_k} - s'_{n_k}|| \ge \epsilon_0$ for some ϵ_0 . For this, $\epsilon > 0$ there exists N such that for all $n_k \ge N$,

$$\left\|u_{n_{k}}-u_{n_{k}}'\right\| \leq d\left(A,B\right) + \in \tag{11}$$

$$\left\|v_{n_{k}}-v_{n_{k}}'\right\| \leq d\left(A,B\right) + \in$$

$$\tag{12}$$

From the parallelogram law, for all $n_k \ge N$,

$$\left\|\frac{\left(u_{n_{k}}-u_{n_{k}}'\right)+\left(v_{n_{k}}-v_{n_{k}}'\right)}{2}\right\|^{2} \leq \left\|\left(\frac{\left(d\left(A,B\right)+\epsilon\right)}{2}\right)^{2}\right\|+\left\|\left(\frac{\left(d\left(A,B\right)+\epsilon\right)}{2}\right)^{2}\right\|-\left(\frac{\epsilon_{0}}{2}\right)^{2}\right\|$$
(13)

AJMS/Jan-Mar-2020/Vol 4/Issue 1

82

As there exists $\in > 0$ such that the R.H.S. is strictly less than $(d(A, B))^2$ a contradiction. Therefore $\Rightarrow s_n - s'_n \to 0$ Let $\limsup \langle u_n - u'_n, u'_n - v'_n \rangle = \limsup (\langle s_n - s'_n, u'_n - v'_n \rangle + \langle v_n - v'_n, u'_n - v'_n \rangle) \ge 0$ As u_n and v_n are bounded sequences $\limsup \sup \langle v_n - v'_n, u'_n - v'_n \rangle \ge 0$ (14) But $\limsup \langle v_n - v'_n, v'_n - u'_n \rangle \ge 0$ analogous to (9) (15)

$$\limsup - \left\langle v_n - v'_n, v'_n - u'_n \right\rangle \ge 0 | \text{ from (14)}$$
(16)

$$\Rightarrow -\lim \inf \left\langle v_n - v'_n, v'_n - u'_n \right\rangle \ge 0 \tag{17}$$

Also $\lim \inf \langle v_n - v'_n, v'_n - u'_n \rangle \ge 0$ is also true being analogous to (10)

$$\Rightarrow \lim \inf \left\langle v_n - v'_n, v'_n - u'_n \right\rangle = 0 \tag{18}$$

Replacing lim inf and lim sup in the above arguments we have

$$\limsup \left\langle v_n - v'_n, v'_n - u'_n \right\rangle = 0 \tag{19}$$

Similarly

$$\liminf \left\langle u_n - u'_n, u'_n - v'_n \right\rangle = 0 \tag{20}$$

$$\limsup \left\langle u_n - u'_n, u'_n - v'_n \right\rangle = 0 \tag{21}$$

From 18,19 and 20,21 and from 6,7 We get the desired result, $\lim_{n\to\infty} \left(\left\| u_n - v'_n \right\| - \left\| v_n - u'_n \right\| \right) = 0.$

Lemma 3.2

Let *A* and *B* be non empty closed subsets of a complete metric space X such that (A,B) satisfying UC property. Let $f: A \cup B \to A \cup B$ be continuous. Suppose that $f(A) \subset B$, $f(B) \subset A$ be a be a continuous function such that

(a)
$$\inf \{ d(x, f(x)) : x \in A \} = d(A, B) = \inf \{ d(x, f(x)) : x \in A \} = d(A, B)$$

(b) There exists $\delta_n > 0$ such that $d(f(x), f(y)) - d(A,B) < \frac{1}{n}$ whenever $max \{ d(x, f(x)) - d(A,B), d(y, f(y)) - d(A,B) \} < \delta_n$ and $x \in A', y \in B'$ where A' and B' are any closed bounded sets of A and B, respectively.

Then, there exists a best proximity point $x \in A$ such that d(x, f(x)) = d(A, B). Further, if d(f(x), f(y)) = d(x, y) for all $x \in A, y \in B$ then the best proximity point is unique.

Proof
Let
$$A_n = \left\{ x \in A : d(x, f(x)) - d(A, B) \le \frac{1}{n} \right\}$$

 $B_n = \left\{ y \in B : d(y, f(y)) - d(A, B) \le \frac{1}{n} \right\}$

Since f is continuous, A_n and B_n are closed.

From (a) A_n and B_n are nonempty, there exits N for all $n \in N$. Let $x \in A_n, y \in B_n$ then $d(x, f(x)) - d(A, B) < \delta_n$ and $d(y, f(y)) - d(A, B) < \delta_n$. From (b) $d(f(x), f(y)) - d(A, B) \le \frac{1}{n}$ where $\delta_n \to 0$. For any $x \in A_n, y \in B_n$, $d(f(x), f(y)) - d(A, B) \le \frac{1}{n}$ Which implies $\delta(f(A_n), f(B_n)) \to d(A, B)$

and hence $\delta(\overline{f(A_n)}, \overline{f(B_n)}) \rightarrow d(A, B)$. By proximal intersection criterion for completeness We have $\bigcap_{n\geq 1} \overline{f(A_n)} = y$, and $\overline{\bigcap_{n\geq 1} f(B_n)} = x$ and d(x, y) = d(A, B). Thus for each $n \geq 1$, there exists $x_n \in A_n$ such that $d(y, f(x_n)) < \frac{1}{n}$ Since $d(x_n, f(x_n)) \rightarrow d(A, B)$, and $d(y_n, f(y_n)) \rightarrow d(A, B)$. By UC property $x_n \rightarrow x$. Since A_n is closed, $x \in A_n$ for each n. This implies $d(x, f(x)) \rightarrow d(A, B)$. Similarly, $y_n \rightarrow y$ such that $d(y, f(y)) \rightarrow d(A, B)$. To prove uniqueness, d(x, f(x)) = d(A, B) and d(x', f(x')) = d(A, B)Since f is non-expansive $d(f^2(x'), f(x')) = d(A, B)$

which implies $f^2(x') = x'$ As $d(x, f(x)) = d(f(x'), f^2(x')) = d(A, B)$. From (b) $d(f(x), x') = d(f(x), f^2(x')) = d(A, B)$ which implies x = x'.

Theorem 3.2

Let *A* and *B* be nonempty closed subsets of a metric space *X* and let $f: A \cup B \to A \cup B$ be continuous such that $f(A) \subset B$, $f(B) \subset A$. Suppose that there exists $\phi: X_d \to [0, \infty]$ such that $d(x, y) - d(A, B) \leq \phi((x, y) - d(A, B))$ for all $x \in A, y \in B$ and $\sup_{s>r} \inf_{t \in [r,s]} (t - \phi(t)) > 0$ for $r \in X_d - \{0\}$. Then, $d_f(x, y) = d(A, B)$ for all $x \in A, y \in B$. Hence, $\inf \{d(x, f(x)): x \in A\} = d(A, B)$.

Proof

Suppose to the contrary that there exists $x \in A, y \in B$ such that

$$\inf\left\{d\left(f^{n}(x), f^{n}(y)\right): n \ge 1\right\} > d(A, B)$$

$$\tag{22}$$

By hypothesis, there exists $s \in (r', \infty)$ such that

$$u = inf_{t \in [r',s]}(t - \phi(t)) > 0 \text{ where } r' = r - d(A,B).$$

Since there exists a sequence $d(f^n(x), f^n(y)) - d(A,B) \rightarrow r'$, where $r' \in X_d - \{0\}.$
Let $t \in (0, s - r')$, i.e. $t < s - r' \Rightarrow r' + t < s$.
Then, from (5), we have
 $d(f^n(x), f^n(y)) - d(A,B) \rightarrow r' + t < s$ for some $n \ge 1$.
Since $d(f^n(x), f^n(y)) - d(A,B) \in [r',s]$
 $u \le d(f^n(x), f^n(y)) - d(A,B) - \phi(d(f^n(x), f^n(y)) - d(A,B))$

$$\phi\left(d\left(f^{n}\left(x\right),f^{n}\left(y\right)\right)-d(A,B)\right) \leq d\left(f^{n}\left(x\right),f^{n}\left(y\right)\right)-d(A,B)-u$$
(23)

If
$$f''(x) \in A$$
, $f''(y) \in B$ and vice versa.
It follows that

$$d_{f}(x,y) - d(A,B) \le d_{f}(f^{n}(x), f^{n}(y)) - d(A,B)$$
(24)

$$\leq d\left(f^{n}(x), f^{n}(y)\right) - d\left(A, B\right)$$
⁽²⁵⁾

$$\leq \phi \left(d \left(f^{n} \left(x \right), f^{n} \left(y \right) \right) \right) - d \left(A, B \right)$$
(26)

$$\leq d\left(f^{n}(x), f^{n}(y)\right) - d\left(A, B\right) \text{ from (23)}$$

$$\tag{27}$$

< r' + t - u	(28)
$< i \pm i = u$	(28)

Letting $t \to 0$, we have

$$d_f(x,y) - d(A,B) \le r' - u \tag{30}$$

$$d_{f}(x,y) - d(A,B) \le r - d(A,B) - u$$
(31)

$$d_f(x,y) \le r - u \tag{32}$$

a contradiction.

Theorem 3.3

Let A and B be nonempty closed subsets of a metric space X. Suppose (A, B) satisfies UC property and diagonal property. Let f be as in theorem 3.2, then f satisfies all the conditions of Lemma 3.2 and therefore f has a unique best proximity point.

Proof

Clearly, from theorem 3.2, (a) of lemma 3.2 satisfied.

To prove (b) of lemma 3.2 assume $x_n \in A$ and $y_n \in B$ are bounded sequences

Then, $d(x_n, f(x_n))$ and $d(y_n, f(y_n)) \rightarrow d(A, B)$ where x_n and y_n are sequences of A and B, respectively. Suppose $d(x_n, f(x_n)) - d(A, B) \rightarrow 0$

Since x_n, y_n are bounded sequence, there exists subsequence n_k and r > 0 such that

$$d(f(x_{n_k}), f(y_{n_k})) - d(A, B) \rightarrow r > 0$$

Clearly, $r \in X_d$. Let $r_{n_k} = d\left(f\left(x_{n_k}\right), f\left(y_{n_k}\right)\right) - d(A, B)$ and $s_{n_k} = d\left(x_{n_k}, y_{n_k}\right) - d(A, B)$ Given $r_{n_k} - s_{n_k} \to 0$ as $k \to \infty$ from diagonal property. $d\left(f\left(x_{n_k}\right), f\left(y_{n_k}\right)\right) - d(A, B) \le d\left(f\left(x_{n_k}\right), f\left(y_{n_k}\right)\right) - d(A, B)$ Therefore, $r_{n_k} \le \phi(s_{n_k})$ Now from 33 $0 > \phi(s_{n_k}) - s_{n_k}$ $= \phi(s_{n_k}) - r_{n_k} + r_{n_k} - s_{n_k}$ (33)

$$= \varphi(s_{n_k}) - r_{n_k} + r_{n_k} -$$

 $\geq r_{n_k} - s_{n_k}$

Since $r_{n_k} - s_{n_k} \to 0$ we have $\liminf (\phi(s_{n_k}) - s_{n_k}) = 0$. Contradicting $\inf_{t \in [r_0, s]} (t - \phi(t)) > 0$ where $s_{n_k} \downarrow r_0$. This completes the proof.

REFERENCES

- 1. Suzuki T, Kikkawa M, Vetro C. The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal 2009;71:2918-26.
- 2. Raj VS, Eldred AA. A characterization of strictly convex spaces and applications. J Optim Theory Appl 2014;160:703-10.

4. Eldred AA. Ph.D Thesis. Madras: Indian Institutes of Technology; 2007.

^{3.} Wong CS. Fixed point theorems for nonexpansive mappings. J Math Anal Appl 1972;37:142-50.