RESEARCH ARTICLE

On Some Geometrical Properties of Proximal Sets and Existence of Best Proximity Points

S. Arul Ravi, A. Anthony Eldred
Department of Mathematics, St. Joseph's College (Autonomous), Tiruchirappalli, Tamil Nadu, India

Received: 31-12-2019; Revised: 31-01-2020; Accepted: 16-02-2020

Abstract

The notion of proximal intersection property and diagonal property is introduced and used to establish some existence of the best proximity point for mappings satisfying contractive conditions.

Key words: Best proximity point, proximal sets, UC property, proximal intersection property, diagonal property
Mathematics Subject Classifications: MSC 2010, 47H09

INTRODUCTION

Let X be a non-empty set and f be a self-map of X. An element $x \in X$ is called a fixed point of f if $f(x)=x$. Fixed point theorems deal with sufficient conditions on X and f which ensure the existence of fixed points. Suppose the fixed point equation $f(x)=x$ does not possess a solution, then the natural interest is to find an element $x \in X$, such that x is in proximity to $f(x)$ in some sense. In other words, we would like to get a desirable estimate for the quantity $d(x, f(x))$.
It is natural that some mapping, especially non-self mappings defined on a metric space (X, d), do not necessarily possess a fixed point that is $d(x, f(x))>0$ for all $x \in X$. In such situations, it is reasonable to search for existence and uniqueness of the point $x \in X$ such that $d(x, f(x))=0$. In other words, one speculates to determine an approximate solution x that is optimal in the sense that the distance between x and $f(x)$ is minimum. Here, the point x is the best proximity point. That is $d(x, f(x))=d(A, B)$ Where $d(A, B)=\inf \{d(x, y): x \in A, y \in B\}$.

Best proximity results is also interesting for the geometrical properties of the underlying space. In Suzuki et al. ${ }^{[1]}$ UC property was introduced to prove some existence results on best proximity point. In Raj and Eldred, ${ }^{[2]}$ the author introduced p-property and proved strict convexity is equivalent to p-property.

We introduce proximal intersection property and diagonal property for a pair (A, B) where A and B are nonempty closed subsets of metric space. We show that every pair (A, B) of a real Hilbert space satisfies diagonal property. Then, these properties are used to establish the existence of best proximity point for mapping satisfying some contractive conditions introduced by Wong. ${ }^{[3]}$

PRELIMINARIES

In this section, we give some basic definitions and concepts that are related to the context of our main results.

Address for correspondence:

Dr. S. Arul Ravi
ammaarulravi@gmail.com

Definition 2. ${ }^{[4]}$

Let A and B be nonempty subsets of a metric space (X, d). Then, (A, B) is said to satisfy property UC if the following holds: If x_{n} and x_{n}^{\prime} are sequences in A and y_{n} is a sequence in B such that $\lim _{n} d\left(x_{n}, y_{n}\right)=d(A, B)$ and $\lim _{n} d\left(x_{n}^{\prime}, y_{n}\right)=d(A, B)$, then $\lim _{n} d\left(x_{n}, x_{n}^{\prime}\right)=0$ holds.

Definition 2.2

Let A and B be nonempty subsets of a metric space (X, d). Then, (A, B) is said to satisfy proximal intersection property if whenever $A_{n} \subset A$ and $B_{n} \subset B$ are a decreasing sequence of closed subsets such that $\delta\left(A_{n}, B_{n}\right) \rightarrow d(A, B)$. Then $\cap A_{n}=\{x\}, \cap B_{n}=\{y\}$ with $d(x, y)=d(A, B)$.

Remark 2.1

$d(A, B)=d(\bar{A}, \bar{B})$ and $\delta(A, B)=\delta(\bar{A}, \bar{B})$ where $\delta(A, B)=\sup \{\|x-y\| . x \in A, y \in B\}$.
Definition 2.3 ${ }^{[2]}$
Let X be a metric space and let $f: X \rightarrow X$. Then, d_{f} is the function on $X \times X$ defined by

$$
\begin{equation*}
d_{f}(x, y)=\inf \left\{d\left(f^{n}(x), f^{n}(y)\right): n \geq 1\right\}, x, y \in X \tag{1}
\end{equation*}
$$

Definition 2.4 ${ }^{[3]}$

Let A and B be nonempty subsets of a metric space X. We shall use X_{d} to denote the set

$$
\begin{equation*}
\left\{r^{\prime}: \text { for any } s>r^{\prime}, d(x, y)-d(A, B) \in\left[r^{\prime}, s\right] \text { for some } x \in A, y \in B\right\} \tag{2}
\end{equation*}
$$

Remark 2.2

If $r^{\prime} \in X_{d}$, then, there exists $x_{n} \in A, y_{n} \in B$ such that $d\left(x_{n}, y_{n}\right)-d(A, B) \rightarrow r^{\prime}$. Also if $x \in A, y \in B$, then $d\left(x_{n}, y_{n}\right)-d(A, B) \in X_{d}$ and if $x_{n} \in A, y_{n} \in B$ such that $d\left(x_{n}, y_{n}\right)-d(A, B) \rightarrow r^{\prime}$ then $r^{\prime} \in X_{d}$.

Definition 2.5

Let (A, B) be proximal pair of a metric space X. Then, (A, B) is said to satisfy diagonal property if whenever $s_{n}, t_{n} \in A$ and $s_{n}^{\prime}, t_{n}^{\prime} \in B$ are bounded sequences such that $d\left(s_{n}, s_{n}^{\prime}\right) \rightarrow d(A, B)$ and $d\left(t_{n}, t_{n}^{\prime}\right) \rightarrow d(A, B)$ then $d\left(s_{n}, t_{n}^{\prime}\right)-d\left(s_{n}^{\prime}, t_{n}\right) \rightarrow 0$.

Lemma 2.1 ${ }^{[1]}$

Let A and B be nonempty subsets of a metric space (X, d). Then, (A, B) has the property UC. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in A and B, respectively, such that either of the following holds:

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \sup _{n \geq m} d\left(x_{m}, y_{n}\right)=d(A, B) \text { or } \\
& \lim _{n \rightarrow \infty} \sup _{m \geq n} d\left(x_{n}, y_{n}\right)=d(A, B)
\end{aligned}
$$

Then $\left\{x_{n}\right\}$ is Cauchy.

MAIN RESULTS

Theorem 3.1

Let A and B be nonempty closed subsets of a complete metric space X satisfying UC property. Let A_{n}, B_{n} be decreasing sequence of nonempty closed subsets of X such that $\delta\left(A_{n}, B_{n}\right) \rightarrow d(A, B)$ as $n \rightarrow \infty$. Then, $\cap A_{n}=\{x\}, \cap B_{n}=\{y\}$ with $d(x, y)=d(A, B)$ that is (A, B) satisfies proximal intersection property.

Proof

Construct a sequence x_{n}, y_{n} in X by selecting $x_{n} \in A_{n}, y_{n} \in B_{n}$ for each $n \in N$.
Since $A_{n+1} \subseteq A_{n}, B_{n+1} \subseteq B_{n}$ for all n, we have $x_{n} \in A_{n} \subseteq A_{m}, y_{n} \in B_{n} \subseteq B_{m}$ for all $n>m$.
We claim that x_{n} is a Cauchy sequence.
Let $\in>0$ be given.
Since $\delta\left(A_{n}, B_{n}\right) \rightarrow d(A, B)$, there exists a positive integer N such that $\delta\left(A_{n}, B_{n}\right)<d(A, B)+\in$, for all
$n \geq N$.
Since A_{n}, B_{n} are decreasing sequences, we have $A_{n}, A_{m} \subseteq A_{N}$ and $B_{n}, B_{m} \subseteq B_{N}$ for all $m, n \geq N$.
Therefore, $x_{n}, x_{m} \in A_{N}$ and $y_{n}, y_{m} \in B_{N}$ for all $m, n \geq N$, and thus we have

$$
\begin{equation*}
d\left(x_{n}, x_{m}\right) \leq \delta\left(A_{n}, B_{n}\right)<d(A, B)+\in \text { for all } m, n \geq N \tag{3}
\end{equation*}
$$

Since A and B satisfy UC property from lemma $2.1 x_{n}$ is a Cauchy sequence. There exists $x \in A$ such that $x_{n} \rightarrow x$. Similarly, there exists $y \in B$ such that $y_{n} \rightarrow y$.
We claim that $x \in \cap A_{n}, y \in \bigcap B_{n}$.
Since A_{n} and B_{n} are closed for each $n, x \in A_{n}, y \in B_{n}$ for all $n \in N$.
Since $d\left(x_{n}, y_{n}\right) \rightarrow d(A, B)$ we have $d(x, y)=d(A, B)$.
Finally to establish that x is the only point in $\cap A_{n}$,
If $x_{1} \neq x_{2} \in \cap A_{n}$, then $d\left(x_{i}, y\right)=d(A, B)$
UC property forces $x_{1}=x_{2}$. Similarly $\cap B_{n}=\{y\}$.

Lemma 3.1

Let A and B be nonempty closed convex subsets of a real Hilbert space. For every bounded sequence $u_{n}, v_{n} \in A$ and $u_{n}^{\prime}, v_{n}^{\prime} \in B$, we have if $\left\|u_{n}-v_{n}\right\|$ and $\left\|u_{n}^{\prime}-v_{n}^{\prime}\right\| \rightarrow d(A, B)$ then

1) $\quad\left(u_{n}-v_{n}\right)-\left(u_{n}^{\prime}-v_{n}^{\prime}\right) \rightarrow 0$.
2) $\lim _{n \rightarrow \infty}\left(\left\|u_{n}-v_{n}^{\prime}\right\|-\left\|v_{n}-u_{n}^{\prime}\right\|\right)=0$.

Proof

Let u_{n}, v_{n} be sequences in A and $u_{n}^{\prime}, v_{n}^{\prime}$ be sequences in B such that
$\left\|u_{n}-u_{n}^{\prime}\right\| \rightarrow d(A, B)$ and $\left\|v_{n}-v_{n}^{\prime}\right\| \rightarrow d(A, B)$
Let $\varepsilon_{n}=\left\langle v_{n}^{\prime}-u_{n}^{\prime}, u_{n}^{\prime}-u_{n}\right\rangle$
Since B is convex, $\lambda v_{n}^{\prime}+(1-\lambda) u_{n}^{\prime} \in B$ for all $0 \leq \lambda \leq 1$
$\left\|u_{n}-v_{n}^{\prime}\right\|^{2}=\left\|u_{n}-u_{n}^{\prime}\right\|^{2}+\left\|u_{n}^{\prime}-v_{n}^{\prime}\right\|^{2}+2\left\langle u_{n}-u_{n}^{\prime}, u_{n}^{\prime}-v_{n}^{\prime}\right\rangle$
$\left\|v_{n}-u_{n}^{\prime}\right\|^{2}=\left\|v_{n}-v_{n}^{\prime}\right\|^{2}+\left\|v_{n}^{\prime}-u_{n}^{\prime}\right\|^{2}+2\left\langle v_{n}-v_{n}^{\prime}, v_{n}^{\prime}-u_{n}^{\prime}\right\rangle$
Using the identity $\frac{1}{4}\left(\|x+y\|^{2}-\|x+y\|^{2}\right)=\langle x, y\rangle$
Since $\left\|u_{n}-\left(\lambda v_{n}^{\prime}+(1-\lambda) u_{n}^{\prime}\right)\right\| \geq d(A, B)$ for all $n, \lim \sup \left(\lambda\left\|u_{n}^{\prime}-v_{n}^{\prime}\right\|^{2}+2 \varepsilon_{n}\right) \geq 0$.
Letting $\rightarrow 0 \lim \sup \varepsilon_{n} \geq 0$. Similarly, $\lim \inf \varepsilon_{n} \geq 0$.
Therefore, $\quad \lim \sup \left\langle u_{n}-u_{n}^{\prime}, u_{n}^{\prime}-v_{n}^{\prime}\right\rangle \geq 0$

$$
\begin{equation*}
\lim \inf \left\langle u_{n}-u_{n}^{\prime}, u_{n}^{\prime}-v_{n}^{\prime}\right\rangle \geq 0 \tag{9}
\end{equation*}
$$

Let $s_{n}=u_{n}-u_{n}^{\prime}$ and $s_{n}^{\prime}=v_{n}-v_{n}^{\prime}$.
Suppose $s_{n}-s_{n}^{\prime} \rightarrow 0$ there exists a subsequence n_{k} such that $\left\|s_{n_{k}}-s_{n_{k}}^{\prime}\right\| \geq \epsilon_{0}$ for some ϵ_{0}.
For this, $\in>0$ there exists N such that for all $n_{k} \geq N$,
$\left\|u_{n_{k}}-u_{n_{k}}^{\prime}\right\| \leq d(A, B)+\epsilon$
$\left\|v_{n_{k}}-v_{n_{k}}^{\prime}\right\| \leq d(A, B)+\epsilon$
From the parallelogram law, for all $n_{k} \geq N$,
$\left\|\frac{\left(u_{n_{k}}-u_{n_{k}}^{\prime}\right)+\left(v_{n_{k}}-v_{n_{k}}^{\prime}\right)}{2}\right\|^{2} \leq\left\|\left(\frac{(d(A, B)+\epsilon)}{2}\right)^{2}\right\|+\left\|\left(\frac{(d(A, B)+\epsilon)}{2}\right)^{2}\right\|-\left(\frac{\epsilon_{0}}{2}\right)^{2}$

As there exists $\in>0$ such that the R.H.S. is strictly less than $(d(A, B))^{2}$ a contradiction.
Therefore $\Rightarrow s_{n}-s_{n}^{\prime} \rightarrow 0$
Let $\lim \sup \left\langle u_{n}-u_{n}^{\prime}, u_{n}^{\prime}-v_{n}^{\prime}\right\rangle=\lim \sup \left(\left\langle s_{n}-s_{n}^{\prime}, u_{n}^{\prime}-v_{n}^{\prime}\right\rangle+\left\langle v_{n}-v_{n}^{\prime}, u_{n}^{\prime}-v_{n}^{\prime}\right\rangle\right) \geq 0$
As u_{n} and v_{n} are bounded sequences $\lim \sup \left\langle v_{n}-v_{n}^{\prime}, u_{n}^{\prime}-v_{n}^{\prime}\right\rangle \geq 0$
But $\lim \sup \left\langle v_{n}-v_{n}^{\prime}, v_{n}^{\prime}-u_{n}^{\prime}\right\rangle \geq 0$ analogous to (9)
$\lim \sup -\left\langle v_{n}-v_{n}^{\prime}, v_{n}^{\prime}-u_{n}^{\prime}\right\rangle \geq 0$ from (14)
$\Rightarrow-\lim \inf \left\langle v_{n}-v_{n}^{\prime}, v_{n}^{\prime}-u_{n}^{\prime}\right\rangle \geq 0$
Also $\lim \inf \left\langle v_{n}-v_{n}^{\prime}, v_{n}^{\prime}-u_{n}^{\prime}\right\rangle \geq 0$ is also true being analogous to (10)
$\Rightarrow \lim \inf \left\langle v_{n}-v_{n}^{\prime}, v_{n}^{\prime}-u_{n}^{\prime}\right\rangle=0$
Replacing lim inf and lim sup in the above arguments we have
$\lim \sup \left\langle v_{n}-v_{n}^{\prime}, v_{n}^{\prime}-u_{n}^{\prime}\right\rangle=0$
Similarly
$\lim \inf \left\langle u_{n}-u_{n}^{\prime}, u_{n}^{\prime}-v_{n}^{\prime}\right\rangle=0$
$\lim \sup \left\langle u_{n}-u_{n}^{\prime}, u_{n}^{\prime}-v_{n}^{\prime}\right\rangle=0$
From 18,19 and 20,21 and from 6,7
We get the desired result, $\lim _{n \rightarrow \infty}\left(\left\|u_{n}-v_{n}^{\prime}\right\|-\left\|v_{n}-u_{n}^{\prime}\right\|\right)=0$.

Lemma 3.2

Let A and B be non empty closed subsets of a complete metric space X such that (A, B) satisfying UC property. Let $f: A \cup B \rightarrow A \cup B$ be continuous. Suppose that $f(A) \subset B, f(B) \subset A$ be a be a continuous function such that
(a) $\quad \inf \{d(x, f(x)): x \in A\}=d(A, B)=\inf \{d(x, f(x)): x \in A\}=d(A, B)$
(b) There exists $\delta_{n}>0$ such that $d(f(x), f(y))-d(A, B)<\frac{1}{n} \quad$ whenever $\max \{d(x, f(x))-d(A, B), d(y, f(y))-d(A, B)\}<\delta_{n}$ and $x \in A^{\prime}, y \in B^{\prime}$ where A^{\prime} and B^{\prime} are any closed bounded sets of A and B, respectively.
Then, there exists a best proximity point $x \in A$ such that $d(x, f(x))=d(A, B)$. Further, if $d(f(x), f(y))=d(x, y)$ for all $x \in A, y \in B$ then the best proximity point is unique.

Proof $A_{n}=\left\{x \in A: d(x, f(x))-d(A, B) \leq \frac{1}{n}\right\}$
$B_{n}=\left\{y \in B: d(y, f(y))-d(A, B) \leq \frac{1}{n}\right\}$
Since f is continuous, A_{n} and B_{n} are closed.
From (a) A_{n} and B_{n} are nonempty, there exits N for all $n \in N$.
Let $x \in A_{n}, y \in B_{n}$ then $d(x, f(x))-d(A, B)<\delta_{n}$ and $d(y, f(y))-d(A, B)<\delta_{n}$.
From (b) $d(f(x), f(y))-d(A, B) \leq \frac{1}{n}$ where $\delta_{n} \rightarrow 0$.
For any $x \in A_{n}, y \in B_{n}, d(f(x), f(y))^{n}-d(A, B) \leq \frac{1}{n}$
Which implies $\delta\left(f\left(A_{n}\right), f\left(B_{n}\right)\right) \rightarrow d(A, B)$
and hence $\delta\left(\overline{f\left(A_{n}\right)}, \overline{f\left(B_{n}\right)}\right) \rightarrow d(A, B)$.
By proximal intersection criterion for completeness
We have $\bigcap_{n \geq 1} \overline{f\left(A_{n}\right)}=y$, and $\overline{\bigcap_{n \geq 1} f\left(B_{n}\right)}=x$ and $d(x, y)=d(A, B)$.
Thus for each $n \geq 1$, there exists $x_{n} \in A_{n}$ such that $d\left(y, f\left(x_{n}\right)\right)<\frac{1}{n}$
Since $d\left(x_{n}, f\left(x_{n}\right)\right) \rightarrow d(A, B)$, and $d\left(y_{n}, f\left(y_{n}\right)\right) \rightarrow d(A, B)$.
By UC property $x_{n} \rightarrow x$.
Since A_{n} is closed, $x \in A_{n}$ for each n. This implies $d(x, f(x)) \rightarrow d(A, B)$.
Similarly, $y_{n} \rightarrow y$ such that $d(y, f(y)) \rightarrow d(A, B)$.
To prove uniqueness,
$d(x, f(x))=d(A, B)$ and $d\left(x^{\prime}, f\left(x^{\prime}\right)\right)=d(A, B)$
Since f is non-expansive $d\left(f^{2}\left(x^{\prime}\right), f\left(x^{\prime}\right)\right)=d(A, B)$
which implies $f^{2}\left(x^{\prime}\right)=x^{\prime}$
As $d(x, f(x))=d\left(f\left(x^{\prime}\right), f^{2}\left(x^{\prime}\right)\right)=d\left(A, B_{\text {: }}\right.$
From (b) $d\left(f(x), x^{\prime}\right)=d\left(f(x), f^{2}\left(x^{\prime}\right)\right)=d\left(A, B\right.$ which implies $x=x^{\prime}$.

Theorem 3.2

Let A and B be nonempty closed subsets of a metric space X and let $f: A \cup B \rightarrow A \cup B$ be continuous such that $f(A) \subset B, f(B) \subset A$. Suppose that there exists $\phi: X_{d} \rightarrow[0, \infty]$ such that $d(x, y)-d(A, B) \leq \phi((x, y)-d(A, B))$ forall $x \in A, y \in B$ and $\sup _{s>r} \inf _{t[[r, s]}(t-\phi(t))>0$ for $r \in X_{d}-\{0\}$. Then, $d_{f}(x, y)=d(A, B)$ for all $x \in A, y \in B$. Hence, $\inf \{d(x, f(x)): x \in A\}=d(A, B)$.

Proof

Suppose to the contrary that there exists $x \in A, y \in B$ such that
$\inf \left\{d\left(f^{n}(x), f^{n}(y)\right): n \geq 1\right\}>d(A, B)$
By hypothesis, there exists $s \in\left(r^{\prime}, \infty\right)$ such that
$u=\inf _{t \in\left[r^{\prime}, s\right]}(t-\phi(t))>0$ where $r^{\prime}=r-d(A, B)$.
Since there exists a sequence $d\left(f^{n}(x), f^{n}(y)\right)-d(A, B) \rightarrow r^{\prime}$, where $r^{\prime} \in X_{d}-\{0\}$.
Let $t \in\left(0, s-r^{\prime}\right)$, i.e. $t<s-r^{\prime} \Rightarrow r^{\prime}+t<s$.
Then, from (5), we have
$d\left(f^{n}(x), f^{n}(y)\right)-d(A, B) \rightarrow r^{\prime}+t<s$ for some $n \geq 1$.
Since $d\left(f^{n}(x), f^{n}(y)\right)-d(A, B) \in\left[r^{\prime}, s\right]$
$u \leq d\left(f^{n}(x), f^{n}(y)\right)-d(A, B)-\phi\left(d\left(f^{n}(x), f^{n}(y)\right)-d(A, B)\right)$
$\phi\left(d\left(f^{n}(x), f^{n}(y)\right)-d(A, B)\right) \leq d\left(f^{n}(x), f^{n}(y)\right)-d(A, B)-u$
If $f^{n}(x) \in A, f^{n}(y) \in B$ and vice versa.
It follows that
$d_{f}(x, y)-d(A, B) \leq d_{f}\left(f^{n}(x), f^{n}(y)\right)-d(A, B)$
$\leq d\left(f^{n}(x), f^{n}(y)\right)-d(A, B)$
$\leq \phi\left(d\left(f^{n}(x), f^{n}(y)\right)\right)-d(A, B)$
$\leq d\left(f^{n}(x), f^{n}(y)\right)-d(A, B)$ from (23)
$<r^{\prime}+t-u$
Letting $t \rightarrow 0$, we have
$d_{f}(x, y)-d(A, B) \leq r^{\prime}-u$
$d_{f}(x, y)-d(A, B) \leq r-d(A, B)-u$
$d_{f}(x, y) \leq r-u$
a contradiction.

Theorem 3.3

Let A and B be nonempty closed subsets of a metric space X. Suppose (A, B) satisfies UC property and diagonal property. Let f be as in theorem 3.2, then f satisfies all the conditions of Lemma 3.2 and therefore f has a unique best proximity point.

Proof

Clearly, from theorem 3.2, (a) of lemma 3.2 satisfied.
To prove (b) of lemma 3.2 assume $x_{n} \in A$ and $y_{n} \in B$ are bounded sequences
Then, $d\left(x_{n}, f\left(x_{n}\right)\right)$ and $d\left(y_{n}, f\left(y_{n}\right)\right) \rightarrow d(A, B)$ where x_{n} and y_{n} are sequences of A and B, respectively.
Suppose $d\left(x_{n}, f\left(x_{n}\right)\right)-d(A, B) \rightarrow 0$
Since x_{n}, y_{n} are bounded sequence, there exists subsequence n_{k} and $r>0$ such that
$d\left(f\left(x_{n_{k}}\right), f\left(y_{n_{k}}\right)\right)-d(A, B) \rightarrow r>0$
Clearly, $r \in X_{d}$.
Let $r_{n_{k}}=d\left(f\left(x_{n_{k}}\right), f\left(y_{n_{k}}\right)\right)-d(A, B)$ and $s_{n_{k}}=d\left(x_{n_{k}}, y_{n_{k}}\right)-d(A, B)$
Given $r_{n_{k}}-s_{n_{k}} \rightarrow 0$ as $k \rightarrow \infty$ from diagonal property.
$d\left(f\left(x_{n_{k}}\right), f\left(y_{n_{k}}\right)\right)-d(A, B) \leq d\left(f\left(x_{n_{k}}\right), f\left(y_{n_{k}}\right)\right)-d(A, B)$
Therefore,
$r_{n_{k}} \leq \phi\left(s_{n_{k}}\right)$
Now from 33
$0>\phi\left(s_{n_{k}}\right)-s_{n_{k}}$
$=\phi\left(s_{n_{k}}\right)-r_{n_{k}}+r_{n_{k}}-s_{n_{k}}$
$\geq r_{n_{k}}-s_{n_{k}}$
Since $r_{n_{k}}-s_{n_{k}} \rightarrow 0$ we have $\lim \inf \left(\phi\left(s_{n_{k}}\right)-s_{n_{k}}\right)=0$.
Contradicting $\inf f_{t \in\left[r_{0}, s\right]}(t-\phi(t))>0$ where $s_{n_{k}} \downarrow r_{0}$.
This completes the proof.

REFERENCES

1. Suzuki T, Kikkawa M, Vetro C. The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal 2009;71:2918-26.
2. Raj VS, Eldred AA. A characterization of strictly convex spaces and applications. J Optim Theory Appl 2014;160:703-10.
3. Wong CS. Fixed point theorems for nonexpansive mappings. J Math Anal Appl 1972;37:142-50.
4. Eldred AA. Ph.D Thesis. Madras: Indian Institutes of Technology; 2007.
