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ABSTRACT
In this paper, modified q-homotopy analysis method (mq-HAM) is proposed for solving high-order 
non-linear partial differential equations. This method improves the convergence of the series solution 
and overcomes the computing difficulty encountered in the q-HAM, so it is more accurate than nHAM 
which proposed in Hassan and El-Tawil, Saberi-Nik and Golchaman. The second- and third-order cases 
are solved as illustrative examples of the proposed method.

Key words: Non-linear partial differential equations, q-homotopy analysis method, modified 
q-homotopy analysis method

INTRODUCTION

Most phenomena in our world are essentially non-linear and are described by non-linear equations. 
It is still difficult to obtain accurate solutions of non-linear problems and often more difficult to 
get an analytic approximation than a numerical one of a given non-linear problem. In 1992, Liao[1] 
employed the basic ideas of the homotopy in topology to propose a general analytic method for non-
linear problems, namely, homotopy analysis method (HAM). In recent years, this method has been 
successfully employed to solve many types of non-linear problems in science and engineering.[2-11] 
All of these successful applications verified the validity, effectiveness, and flexibility of the HAM. 
The HAM contains a certain auxiliary parameter h which provides us with a simple way to adjust and 
control the convergence region and rate of convergence of the series solution. Moreover, by means 
of the so-called h-curve, it is easy to determine the valid regions of h to gain a convergent series 
solution. Hassan and El-Tawil[7] presented a new technique of using HAM for solving high-order 
non-linear initial value problems (nHAM) by transform the nth-order non-linear differential equation 
to a system of n first-order equations. El-Tawil and Huseen[12] established a method, namely, q-HAM 
which is a more general method of HAM. The q-HAM contains an auxiliary parameter n as well 
as h such that the case of n=1 (q-HAM; n=1) the standard HAM can be reached. The q-HAM has 
been successfully applied to numerous problems in science and engineering.[12-22] Huseen and Grace[23] 
presented modifications of q-HAM (mq-HAM). They tested the scheme on two second-order non-
linear exactly solvable differential equations. The aim of this paper is to apply the mq-HAM to obtain 
the approximate solutions of high-order non-linear problems by transform the nth-order non-linear 
differential equation to a system of n first-order equations. We note that the case of n=1 in mq-HAM 
(mq-HAM; n=1), the nHAM[7] can be reached.
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ANALYSIS OF THE Q-HAM

Consider the following non-linear partial differential equation:

 N[u(x, t)]=0 (1)

Where, N is a non-linear operator, (x, t) denotes independent variables, and u(x, t) is an unknown function. 
Let us construct the so-called zero-order deformation equation:

 (1–nq)L[∅(x, t; q)–u0 (x, t)]=qhH(x, t)N[∅(x, t; q)] (2)

where n≥1, q∈[0, 1
n

] denotes the so-called embedded parameter, L is an auxiliary linear operator with 

the property L[f]=0 when f=0, h≠0 is an auxiliary parameter, H(x, t) denotes a non-zero auxiliary function. 

It is obvious that when q=0 and q= 1
n

 Equation (2) becomes

 ∅( ) = ( ) ∅





 =x t u x t and x t
n

u x t, ; , , ; ( , )0
1

0
 (3)

respectively. Thus, as q increases from 0 to 1
n

, the solution ∅(x, t; q) varies from the initial guess u0 (x, t) 

to the solution (x, t). We may choose u0 (x, t), L, h, H (x, t) and assume that all of them can be properly 

chosen so that the solution ∅(x, t; q) of Equation (2) exists for q∈[0, 1
n

].

Now, by expanding ∅(x, t; q) in Taylor series, we have

 ∅( ) = ( ) + =

+∞∑x t q u x t u x t qm
m

m
, ; , ( , )

0 1
 (4)

where

 u x t
m

x t q
qm

m

m q,
!

( , ; )
|( ) = ∂ ∅

∂ =
1

0
 (5)

Next, we assume that h, H (x, t), u0 (x, t), L are properly chosen such that the series (4) converges at 

q= 1
n

 and:

 u x t x t
n

u x t u x t
nm m

m

, , ; , ,( ) = ∅





 = ( ) + ( )






=

+∞∑1 1
0 1

 (6)

We let

 u x t u x t u x t u x t u x tr r, , , , , , , , ,( ) = ( ) ( ) ( ) … ( ){ }0 1 2

Differentiating equation (2) m times with respect to q and then setting q=0 and dividing the resulting 
equation by m! we have the so-called mth order deformation equation

 L u x t k u x t hH x t R u x tm m m m m, , , ( , )( ) − ( )  = ( ) ( )− −1 1

  (7)

where,

 R u x t
m

N x t q f x t
qm m

m

m q( , )
!

( , ; , )
|−

−

− =( ) =
−( )

∂ ∅( )  − ( )
∂1

1

1 0

1

1

  (8)
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and

 k
m

n otherwisem =
≤




0 1
 (9)

It should be emphasized that um (x, t) for m≥1 is governed by the linear Equation (7) with linear boundary 

conditions that come from the original problem. Due to the existence of the factor 1
n

m

, more chances for 

convergence may occur or even much faster convergence can be obtained better than the standard HAM. 
It should be noted that the case of n=1 in Equation (2), standard HAM can be reached. The q-HAM can 
be reformatted as follows:
We rewrite the nonlinear partial differential equation (1) in the form

Lu x t Au x t Bu x t, , ,( ) + ( ) + ( ) = 0

u x f x, ,0
0( ) = ( )

 ∂
∂

= ( )=
u x t
t

f xt
( , )

| ,
0 1

 (10)

∂
∂

=
−

− = −

( )

( ) ( ) ( )

( , )
| ( ),

z

z t z
u x t f x

1

1 0 1

Where, L
t

z

z
=

∂
∂( )

, z=1,2,… is the highest partial derivative with respect to t, A is a linear term, and B is 

non-linear term. The so-called zero-order deformation Equation (2) becomes:

 1
0

−( ) ∅( ) −  = ( ) ( ) + ( ) +nq L x t q u x t qhH x t Lu x t Au x t Bu x t, ; ( , ) , ( , , ,(( ))  (11)

we have the mth order deformation equation

 L u x t k u x t hH x t Lu x t Au x t B um m m m m, , , ( , , (( ) − ( )  = ( ) ( ) + ( ) +− − −1 1 1 mm x t− ( )1



, ))  (12)

and hence

 u x t k u x t hL H x t Lu x t Au x t B um m m m m m, , [ , ( , , (( ) = ( ) + ( ) ( ) + ( ) +−
−

− −1

1

1 1 −− ( )1

 x t, ))]  (13)

Now, the inverse operator L–1 is an integral operator which is given by

 L dt dt dt c t c t c
z times

z z
z

− − −( ) = … ( ) … + + +…+∫∫ ∫1

1

1

2

2
. . � �� ��  (14)

where c1, c2,…, cz are integral constants.
To solve (10) by means of q-HAM, we choose the initial approximation:

 u x t f x f x t f x t f x t
zz

z

0 0 1 2

2

1

1

2 1
,

! ( )!
( ) = ( ) + ( ) + ( ) +…+ ( )

−−

−

 (15)

Let (x, t)=1, by means of Equations (14) and (15) then Equation (13) becomes

 u x t k u x t h
u x

Au xm m m

tt t
z
m

z m, , (
,

,( ) = ( ) + …
∂ ( )

∂
+ ( ) +−

−
−∫∫ ∫1

00 0

1

1

τ
τ

τ BB u x d d dm

z times

( , ))− ( ) …
1

�

� �� ��τ τ τ τ  (16)
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Now from times 00 0

1
tt t

z
m

z
z times

u x
d d d∫∫ ∫…

∂ ( )
∂

…−
(

,τ
τ

τ τ τ� �� �� , we observe that there are repeated computations 

in each step which caused more consuming time. To cancel this, we use the following modification to 
(16):

u x t k u x t h
u x

d d dm m m
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z
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 (17)

Now, for m=1, km=0 and

u x t
u x
t

t u x
t

t
z

u xz z
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Substituting this equality into Equation (17), we obtain

 u x t h Au x B u x d d d
tt t

z times

1
00 0

0 0
, ( , ( , ))( ) = … ( ) + ( ) …∫∫ ∫ τ τ τ τ τ� �� ��  (18)

For m>1, km=n and

u x
u x
t

u x
t

u x
tm

m m
z

m
z, ,

,
,

,
, ,

,
0 0

0
0

0
0

0
0

2

2

1

1
( ) = ∂ ( )

∂
=

∂ ( )
∂

= …
∂ ( )

∂
=

−

−

Substituting this equality into Equation (17), we obtain

 u x t n h u x t h Au x B u xm m

tt t

m m, , ( , ( ,( ) = +( ) ( ) + … ( ) + ( )− − −∫∫ ∫1
00 0

1 1
τ τ�

)))d d d
z times

τ τ τ…� �� ��  (19)

We observe that the iteration in Equation (19) does not yield repeated terms and is also better than the 
iteration in Equation (16).
The standard q-HAM is powerful when z=1, and the series solution expression by q-HAM can be written 
in the form

 ( ) ( ) ( )0

1, ; ; , ; ; , ; ;
=

 ≅ =  
 

∑
i

M
M ii

u x t n h U x t n h u x t n h
n

 (20)

However, when z≥2, there are too much additional terms where harder computations and more time 
consuming are performed. Hence, the closed form solution needs more number of iterations.
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THE PROPOSED MQ-HAM

When z≥2, we rewrite Equation (1) as the following system of the first-order differential equations
ut=u1

u1t=u2

	 ⋮	 (21)

u{z–1}t=–Au(x, t)–Bu(x, t)
Set the initial approximation

u0 (x, t)=f0 (x),
u10 (x, t)=f1 (x),

	 ⋮	 (22)

u{z–1}0 (x, t)=f(z–1) (x)
Using the iteration formulas (18) and (19) as follows

u x t h u x d
t

1
0

0
1( , ) , ,= − ( )( )∫ τ τ

 u x t h u x d
t

1 2
1

0
0

( , ) ,= − ( )( )∫ τ τ  (23)

⋮

u z x t h Au x B u x d
t

{ } ( , ) , ( , )− = ( ) + ( )( )∫1
1

0

0 0
τ τ τ

For m>1, km=n and
um (x, 0)=0, u1m (x, 0)=0, u2m (x, 0)=0,…,u{z–1}m (x, 0)=0

Substituting in Equation (17), we obtain

u x t n h u x t h u x dm m

t

m, , , ,( ) = +( ) ( ) + − ( )( )− −∫1
0

1
1 τ τ

 u x t n h u x t h u x dm m

t

m1 1 2
1

0
1

, , ,( ) = +( ) ( ) + − ( )( )− −∫ τ τ  (24)

⋮

u z x t n h u z x t h Au x B u xm m

t

m m{ } , { } , , ( ,− ( ) = +( ) − ( ) + ( ) + (− − −∫1 1
1

0

1 1
τ τ ))( )) dτ

To illustrate the effectiveness of the proposed mq-HAM, comparison between mq-HAM and the standard 
q-HAM is illustrated by the following examples.

ILLUSTRATIVE EXAMPLES[8,9]

We choose the following two cases when z=2 and z=3.
Case 1. z=2
Consider the modified Boussinesq equation

 utt–uxxxx– (u3)xx=0 (25)

subject to the initial conditions
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u x x, [ ]0 2( ) = sech

 u x x xt , [ ]0 2( ) = [ ]sech tanh  (26)

The exact solution is

 u x t x t, [ ]( ) = −2sech  (27)

This problem solved by HAM (q-HAM [n=1]) and nHAM (mq-HAM [n=1]),[7] so we will solve it by 
q-HAM and mq-HAM and compare the results.

IMPLEMENTATION OF Q-HAM

We choose the initial approximation
u0 (x, t)=u(x, 0)+tut (x, 0)

 = [ ]+ [ ]2 2sech sech tanhx t x x[ ]  (28)

and the linear operator:

 L x t q x t q
t

[ , ; ]
( , ; )

,∅( ) = ∂ ∅
∂

2

2
 (29)

with the property:

 L[c0+c1t]=0, (30)

where c0 and c1 are real constants.
We define the nonlinear operator by

 N x t q x t q
t

x t q
x x

x t q∅( )  =
∂ ∅

∂
−
∂ ∅

∂
−
∂
∂

∅( ), ;
( , ; ) ( , ; )

[ , ; ]

2

2

4

4

2

2

3  (31)

According to the zero-order deformation Equation (2) and the mth-order deformation equation (7) with

 R u u
t

u
x x

u u um
m m

i

m
m i j

i
j i−

− −
=

−
− − = −( ) = ∂

∂
−
∂
∂

−
∂
∂ ∑ ∑1

2

1

2

4

1

4

2

2 0

1

1 0



( jj )  (32)

The solution of the mth-order deformation equation (7) for m≥1 takes the form

 u x t k u x t h R u dt dt c c tm m m m, ,( ) = ( ) + ( ) + +− −∫∫1 1 0 1

  (33)

where the coefficients c0 and c1 are determined by the initial conditions:

 u x
u x
tm

m
, ,

,
0 0

0
0( ) = ∂ ( )

∂
=  (34)

Obviously, we obtain

u x t ht x t x t
1

2 8 2 21

960 2
135 5 56 15 19 412, [ ] ( ( ) [ ] ( )( ) = − − + − +Sech Cosh CCosh Cosh

Cosh Cosh Sinh

[ ] [ ]

[ ] [ ] [ ]

3 15 5

540 5 15 7 215
2

x x

t x x t x

− +

+ − +

66120 315 3 1836 3 95 5

108

3 3t x t x t x t xSinh Sinh Sinh Sinh[ ] [ ] [ ] [ ]− − − +

tt x t x3
5 5 7Sinh Sinh[ ] [ ])+
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u x t h h n t x t x
2

2 8 21

960 2
135 5 56

15 19 4

, ( ) ( ( ) [ ]

(

( ) = − + [ ] − +

− +

Sech Cosh

112 3 15 5 540 5 15 7

215

2 2t x x t x x
t

) [ ] [ ] [ ] [ ]Cosh Cosh Cosh Cosh

Sin

− + +

− hh Sinh Sinh Sinh

Sinh

[ ] [ ] [ ] [ ]

[

x t x t x t x
t x

+ − −

−

6120 315 3 1836 3

95 5

3 3

]] [ ] [ ])

(

+ +

+ − [ ] + [ ]

108 5 5 7

1

160 2
1 2

3

10

t x t x

h ht x x

Sinh Sinh

Sech Cosh ++ [ ]( ) − +…Sinh Cosh2 1 6 2
3

x x( [ ]

 (34)

um (x, t), (m=3,4,…) can be calculated similarly. Then, the series solution expression by q-HAM can be 
written in the form:

 u x t n h U x t n h u x t n h
nM i

M
i

i

, ; ; , ; ; , ; ;( ) ( ) = ( )





=∑≅

0

1  (35)

Equation (35) is a family of approximation solutions to the problem (25) in terms of the convergence 
parameters h and n. To find the valid region of h, the h curves given by the 3rd order q-HAM approximation 
at different values of x, t, and n are drawn in Figures 1-3. This figure shows the interval of h which the 
value of U3 (x, t; n) is constant at certain x, t, and n, We choose the line segment nearly parallel to the 
horizontal axis as a valid region of h which provides us with a simple way to adjust and control the 
convergence region. Figures 4 and 5 show the comparison between U3 of q-HAM using different values 
of n with the solution (27). The absolute errors of the 3rd order solutions q-HAM approximate using 
different values of n are shown in Figures 6 and 7.

IMPLEMENTATION OF MQ-HAM

To solve Equation (25) by mq-HAM, we construct system of differential equations as follows
ut (x, t)=v(x, t),

 v x t u x t
x x

u x tt ,
( , )

[ , ]( ) = ∂
∂

+
∂
∂

( )
4

4

2

2

3  (36)

with initial approximations 

 u x t x v x t x x
0 0

2 2, , , [ ]( ) = [ ] ( ) = [ ]sech sech tanh  (37)

and the auxiliary linear operators 

Figure 1: h curve for the (q-HAM; n=1) (HAM) approximation solution U3 (x, t; 1) of problem (25) at different values of x 
and t
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 Lu x t u x t
t

Lv x t v x t
t

,
( , )

, ,
( , )( ) = ∂

∂
( ) = ∂

∂
 (38)

and

Au x t u x t
xm

m
−

−( ) = − ∂
∂1

4

1

4
,

( , )

Figure 2: h curve for the (q-HAM; n=50) approximation solution U3 (x, t; 50) of problem (25) at different values of x and t

Figure 3: h curve for the (q-HAM; n=100) approximation solution U3 (x, t; 100) of problem (25) at different values of x 
and t

Figure 4: Comparison between U3 of q-HAM (n=1, 2, 5, 10, 20, 50, 100) with exact solution of Equation (25) at x=0 with 
h=–1, h=–1.8, h=–4.5, (h=–8, h=–15.2, h=–37, h=–70), respectively
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 Bu x t
x

u x t u x t u x tm i

m
m i j

i
j i j− =

−
− − = −( ) = − ∂

∂
( )∑ ∑1

2

2 0

1

1 0



, ( ( , ) , ( , )))  (39)

From Equations (23) and (24) we obtain:

 u x t h v x d
t

1
0

0
, ,( ) = − ( )( )∫ τ τ  (40)

Figure 5: Comparison between U3 of q-HAM (n=1, 2, 5, 10, 20, 50, 100) with exact solution of Equation (25) at x=1 with 
(h=–1, h=–1.8, h=–4.5, h=–8, h=–15.2, h=–37, h=–70), respectively

Figure 6: The absolute error of U3 of q-HAM (n=1, 2, 5, 10, 20, 50, 100) for problem (25) at x=0 using (h=–1, h=–1.8, 
h=–4.5, h=–8, h=–15.2, h=–37, h=–70), respectively

Figure 7: The absolute error of U3 of q-HAM (n=1, 2, 5, 10, 20, 50, 100) for problem (25) at x=1 using (h=–1, h=–1.8, 
h=–4.5, h=–8, h=–15.2, h=–37, h=–70), respectively
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 v x t h
u x
x x

u x d
t

1
0

4

0

4

2

2 0

3

,
,

,( ) = −
∂ ( )

∂
−
∂
∂

( )( )







∫

τ
τ τ .

Now, form ≥2, we get

 u x t n h u x t h v x dm m

t

m, , ,( ) = +( ) ( ) + − ( )( )− −∫1
0

1
τ τ  (41)

 v x t n h v x t h u x
x x

um m

t
m

i

m

m, ,
( , )

(( ) = +( ) ( ) + −
∂

∂
−
∂
∂−

−

=

−

∫ ∑1

0

4

1

4

2

2

0

1τ
−− −

=
−∑ ( )









1

0

i
j

i

j i jx u x u x d( , ) , ( , ))τ τ τ τ

And the following results are obtained

u x t ht x x
1

2, [ ] [ ]( ) = − Sech Tanh

v x t ht x x x
1

5 4
2 2, ( [ ] [ ] [ ] )( ) = −Sech Sech Tanh

u x t h t x x h h n t x x
2

2 2 3
3 2

2 2
2,

( [ ]) [ ]
( ) [ ] [ ]( ) = − +

− +
Cosh Sech

Sech Tanh

v x t h t x x x h h n t
2

2 2 3
11 2

2 2
2,

( [ ]) [ ] [ ]
( ) ( [( ) = − +

+ +
Cosh Sech Tanh

Sech xx x x] [ ] [ ] )
5 4

2− Sech Tanh

um (x, t), (m=3, 4,…) can be calculated similarly. Then, the series solution expression by mq- HAM can 
be written in the form:

 u x t n h U x t n h u x t n h
nM i

M
i

i

, ; ; , ; ; , ; ;( ) ( ) = ( )





=∑≅

0

1  (42)

Equation (42) is a family of approximation solutions to the problem (25) in terms of the convergence 
parameters h and n. To find the valid region of h, the h curves given by the 3rd order mq-HAM approximation 
at different values of x, t, and n are drawn in Figures 8-10. This figure shows the interval of h which 
the value of U3 (x, t; n) is constant at certain x, t, and n. We choose the line segment nearly parallel to 
the horizontal axis as a valid region of h which provides us with a simple way to adjust and control the 
convergence region. Figure 11 shows the comparison between U3 of mq-HAM using different values 
of n with the solution (27). The absolute errors of the 3th order solutions mq-HAM approximate using 
different values of n are shown in Figure 12. The results obtained by mq-HAM are more accurate than 

Figure 8: h curve for the (mq-HAM; n=1) approximation solution U3 (x, t; 1) of problem (25) at different values of x and t
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q-HAM at different values of x and n, so the results indicate that the speed of convergence for mq-HAM 
with n>1 is faster in comparison with n=1 (nHAM). The results show that the convergence region of 
series solutions obtained by mq-HAM is increasing as q is decreased, as shown in Figures 11 and 12. 
By increasing the number of iterations by mq-HAM, the series solution becomes more accurate, more 
efficient and the interval of t (convergent region) increases, as shown in Figures 13-20.
Case 2. z=3
Consider the non-linear initial value problem:

 u x t u x t x u x t u x tttt x, , , ,( ) + ( ) − ( )( ) + ( )( ) =2 6 0
2 4

 (43)

Figure 9: h curve for the (mq-HAM; n=50) approximation solution U3 (x, t; 50) of problem (25) at different values of x 
and t

Figure 10: h curve for the (mq-HAM; n=100) approximation solution U3 (x, t; 100) of problem (25) at different values of x 
and t

Figure 11: Comparison between U3 (x, t) of mq-HAM (n=1, 2, 5, 10, 20, 50, 100) with exact solution of Equation (25) at 
x=0 with (h=–1, h=–1.8, h=–4.5, h=–8, h=–15.2, h=–37, h=–70), respectively
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Subject to the initial conditions

 u x
x
u x

x
u x

xt tt, , , , ,0
1

0
1

0
2

2 4 6
( ) = − ( ) = − ( ) = −  (44)

The exact solution is

 u x t
x t

,( ) =
− +
1
2

 (45)

Figure 12: The absolute error of U3 of mq-HAM (n=1, 2, 5, 10, 20, 50, 100) for problem (25) at x=0 using (h=–1, h=–1.8, 
h=–4.5, h=–8, h=–15.2, h=–37, h=–70), respectively

Figure 13: The comparison between the U3 (x, t) of q-HAM (n=1), U3 (x, t) of mq-HAM (n=1), U5 (x, t) of mq-HAM (n=1), 
and the exact solution of Equation (25) at h=–1 and x=0

Figure 14: The comparison between the U3 (x, t) of q-HAM (n=1), U3 (x, t) of mq-HAM (n=1), U5 (x, t) of mq-HAM (n=1), 
and the exact solution of Equation (25) at h=–1 and x=1
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This problem solved by HAM (q-HAM (n=1)) and nHAM (mq-HAM (n=1)),[7] so we will solve it by 
q-HAM and mq-HAM and compare the results.

IMPLEMENTATION OF Q-HAM

We choose the initial approximation

 u x t
x

t
x

t
x0 2 4

2

6

1
,( ) = − − −  (46)

Figure 15: The comparison between the U3 (x, t) of q-HAM (n=100), U3 (x, t) of mq-HAM (n=100), U5 (x, t) of mq-HAM 
(n=100), and the exact solution of Equation (25) at h=–70 and x=0

Figure 16: The comparison between the U3 (x, t) of q-HAM (n=100), U3 (x, t) of mq-HAM (n=100), U5 (x, t) of mq-HAM 
(n=100), and the exact solution of Equation (25) at h=–70 and x=1

Figure 17: The comparison between the absolute error of U3 (x, t) of q-HAM (n=1) and U3 (x, t) of mq-HAM (n=1) of 
Equation (25) at h=–1, x=0 and-1≤t≤1
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and the linear operator:

 L x t q x t q
t

[ , ; ]
( , ; )

∅( ) = ∂ ∅
∂

3

3
 (47)

with the property:

 L c c t c t
0 1 2

2
0+ +  =  (48)

where c0, c1, and c2 are real constants.

Figure 18: The comparison between the absolute error of U3 (x, t) of q-HAM (n=100) and U3 (x, t) of mq-HAM (n=100) of 
Equation (25) at h=–70, x=0 and –1≤t≤1

Figure 19: The comparison between the absolute error of U3 (x, t) of mq-HAM (n=1) and U5 (x, t) of mq-HAM (n=1) of 
Equation (25) at h=–1, x=1 and –1.5≤t≤1.5

Figure 20: The comparison between the absolute error of U3 (x, t) of mq-HAM (n=100) and U5 (x, t) of mq-HAM (n=100) 
of Equation (25) at h=–70, x=1 and –1.5≤t≤1.5
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Next, we define the nonlinear operator by

 N x t q x t q
t

x t q
x

x x t q x∅( )  =
∂ ∅

∂
+
∂∅

∂
− ∅( ) + ∅, ;

( , ; ) ( , ; )
[ , ; ] [

3

3

2
2 6 ,, ; ]t q( ) 4  (49)

According to the zero-order deformation Equation (2) and the mth-order deformation equation (7) with

 R u u
t

u
x

x u u um
m m m

i m i
m

mi i−
− − −

− −
−

− −= =( ) = ∂
∂

+
∂
∂

− +∑ ∑1

3

1

3

1 1

1

1

10 0
2 6



ii i j k j kj

i

k

ju u u
= =− −∑ ∑0 0

 (50)

The solution of the mth-order deformation equation (7) for m≥1 becomes:

 u x t k u x t h R u dt dt dt c c t c tm m m m, ,( ) = ( ) + ( ) + + +− −∫∫∫1 1 0 1 2

2  (51)

where the coefficients c0, c1 and c2 are determined by the initial conditions:

 u x
u x
t

u x
tm

m m
, ,

,
,

,
0 0

0
0

0
0

2

2
( ) = ∂ ( )

∂
=

∂ ( )
∂

=  (52)

We now successively obtain:

u x t
x
ht t t x t x t x

t x

1 24

3 8 7 2 6 4 5 6

2 12

1

2310
14 77 275 660

2310

, (( ) = + + +

+ + 22310 2310 22 57 77 24
14 16 4 8 5 3 10 5tx x t x x t x x+ − − + − − +( ) ( ))

u x t
x
hnt t t x t x t x

t x

2 24

3 8 7 2 6 4 5 6
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1

2310
14 77 275 660

2310

, (( ) = + + + +

++ + − − + − − +

−

2310 2310 22 57 77 24

1

244432
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519792 5197920 30603300

1272889

42

2 3 17 16 2 15 4

x
h t t t x t x( + + +

880 10475665200
14 6 5 24t x t x+ −…

um (x, t), (m=3,4,…) can be calculated similarly. Then, the series solution expression by q- HAM can be 
written in the form:

 u x t n h U x t n h u x t n h
nM i

M
i

i

, ; ; , ; ; , ; ;( ) ( ) = ( )





=∑≅

0

1  (53)

Equation (53) is a family of approximation solutions to the problem (43) in terms of the convergence parameters 
h and n. To find the valid region of h, the h curves given by the 5th order q-HAM approximation at different 
values of x, t, and n are drawn in Figures 21-23. This figure shows the interval of h which the value of U5 
(x, t; n) is constant at certain x, t and n. We choose the line segment nearly parallel to the horizontal axis as a 
valid region of h which provides us with a simple way to adjust and control the convergence region. Figure 24 
shows the comparison between U5 of q-HAM using different values of n with the solution 45. The absolute 
errors of the 5th order solutions q-HAM approximate using different values of n are shown in Figure 25.

IMPLEMENTATION OF MQ-HAM

To solve Equation (43) by mq-HAM, we construct system of differential equations as follows
ut (x, t)=v(x, t),

 vt (x, t)=w(x, t) (54)

With initial approximations

 u x t
x

v x t
x

w x t
x0 2 0 4 0 6

1 1 2
, , , , ,( ) = − ( ) = − ( ) = −  (55)



Huseen, et al.: Solving high-order non-linear partial differential equations

AJMS/Apr-Jun-2020/Vol 4/Issue 2 40

And the auxiliary linear operators

 Lu x t u x t
t

Lv x t v x t
t

Lw x t w x t
t

,
( , )

, ,
( , )

, ,
( , )( ) = ∂

∂
( ) = ∂

∂
( ) = ∂

∂
 (56)

And

Au x t u x t
xm

m
−

−( ) = ∂
∂1

1,
( , )

 Bu x t x u u u um i

m
i m i i

m
m i j

i
i j k

j
− =

−
− − =

−
− − = − =( ) = − +∑ ∑ ∑1 0

1

1 0

1

1 0 0
2 6



, ∑∑ −u uk j k  (57)

Figure 21: h curve for the (q-HAM; n=1) (HAM) approximation solution U5 (x, t; 1) of problem (43) at different values of 
x and t

Figure 22: h curve for the (q-HAM; n=20) approximation solution U5 (x, t; 20) of problem (43) at different values of x 
and t

Figure 23: h curve for the (q-HAM; n=100) approximation solution U5 (x, t; 100) of problem (43) at different values of x 
and t
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From Equations (23) and (24) we obtain

u x t h v x d
t

1
0

0
, ,( ) = − ( )( )∫ τ τ

 v x t h w x d
t

1
0

0
, ,( ) = − ( )( )∫ τ τ  (58)

w x t h
u x
x

x u x u x d
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2
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2 6,
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τ τ τ

For m≥2,
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1
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 τ

The following results are obtained

Figure 24: Comparison between U5 of q-HAM (n=1, 2, 5, 10, 20, 50, 100) with exact solution of Equation (43) at x=4 with 
(h=–1, h=–1.97, h=–4.83, h=–8.45, h=–18.3, h=–44.75, h=–86), respectively

Figure 25: The absolute error of U5 of q-HAM (n=1, 2, 5, 10, 20, 50, 100) for problem (43) at x=4 using h=–1, h=–1.97, 
h=–4.83, h=–8.45, h=–18.3, h=–44.75, h=–86), respectively
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um (x, t), (m=4, 5,…) can be calculated similarly. Then, the series solution expression by mq-HAM can 
be written in the form:

 u x t n h U x t n h u x t n h
nM i

M
i

i

, ; ; , ; ; , ; ;( ) ( ) = ( )





=∑≅

0

1  (60)

Equation (60) is a family of approximation solutions to the problem (43) in terms of the convergence 
parameters h and n. To find the valid region of h, the h curves given by the 5th order mq-HAM approximation 
at different values of x, t, and n are drawn in Figures 26-28. This figure shows the interval of h which 
the value of U5 (x, t; n) is constant at certain x, t, and n. We choose the line segment nearly parallel to 
the horizontal axis as a valid region of h which provides us with a simple way to adjust and control the 
convergence region. Figure 29 shows the comparison between U5 of mq-HAM using different values 
of n with the solution (45). The absolute errors of the 5th order solutions mq-HAM approximate using 
different values of n are shown in Figure 30. The results obtained by mq-HAM are more accurate than 
q-HAM at different values of x and n, so the results indicate that the speed of convergence for mq-HAM 
with n>1 is faster in comparison with n=1. (nHAM). The results show that the convergence region 
of series solutions obtained by mq-HAM is increasing as q is decreased, as shown in Figures 29-36. 

Figure 26: h curve for the (mq-HAM; n=1) approximation solution U5 (x, t; 1) of problem (43) at different values of x and t

Figure 27: h curve for the (mq-HAM; n=20) approximation solution U5 (x, t; 20) of problem (43) at different values of x 
and t
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By increasing the number of iterations by mq-HAM, the series solution becomes more accurate, more 
efficient and the interval of t (convergent region) increases, as shown in Figures 31-36.

Figure 28: h curve for the (mq-HAM; n=100) approximation solution U5 (x, t; 100) of problem (43) at different values of x 
and t

Figure 29: Comparison between U5 of mq-HAM (n=1, 2, 5, 10, 20, 50, 100) with exact solution of Equation (43) at x=4 
with (h=–1, h=–1.97, h=–4.83, h=–9.45, h=–18.3, h=–44.75, h=–86), respectively

Figure 30: The absolute error of U5 of mq-HAM (n=1, 2, 5, 10, 20, 50, 100) for problem (43) at x=4, –20≤t≤5 using h=–1, 
h=–1.97, h=–4.83, h=–9.45, h=–18.3, h=–44.75, h=–86), respectively
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Figure 31: The comparison between the U5 (x, t) of q-HAM (n=1), U3 (x, t) of mq-HAM (n=1), U5 (x, t) of mq-HAM (n=1), 
U7 (x, t) of mq-HAM (n=1), and the exact solution of Equation (43) at h=–1 and x=4

Figure 32: The comparison between the U5 (x, t) of q-HAM (n=20), U3 (x, t) of mq-HAM (n=20), U5 (x, t) of mq-HAM 
(n=20), U7 (x, t) of mq-HAM (n=20), and the exact solution of Equation (43) at h=–18.3 and x=4

Figure 33: The comparison between the U5 (x, t) of q-HAM (n=100), U3 (x, t) of mq-HAM (n=100), U5 (x, t) of mq-HAM 
(n=100), U7 (x, t) of mq-HAM (n=100), and the exact solution of (43) at h=–86 and x=4

Figure 34: The comparison between the absolute error of U5 (x, t) of q-HAM (n=1), U3 (x, t) of mq-HAM (n=1), U5 (x, t) of 
mq-HAM (n=1), and U7 (x, t) of mq-HAM (n=1) of Equation (43) at h=–1, x=4 and –15≤t≤2
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CONCLUSION

A mq-HAM was proposed. This method provides an approximate solution by rewriting the nth-order 
non-linear differential equation in the form of n first-order differential equations. The solution of these n 
differential equations is obtained as a power series solution. It was shown from the illustrative examples 
that the mq-HAM improves the performance of q-HAM and nHAM.
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