RESEARCH ARTICLE

Solving High-order Non-linear Partial Differential Equations by Modified q-Homotopy Analysis Method

Shaheed N. Huseen ${ }^{1}$, Magdy A. El-Tawil², Said R. Grace², Gamal A. F. Ismail ${ }^{3}$
${ }^{\text {I Department of Mathematics, Faculty of Computer Science and Mathematics, University of Thi-Qar, Iraq, }}$ ${ }^{2}$ Department of Engineering Mathematics, Faculty of Engineering, Cairo University, Giza, Egypt, ${ }^{3}$ Department of Mathematics, Women's Faculty, Ain Shams University, Egypt

Received: 25-04-2020; Revised: 25-05-2020; Accepted: 10-06-2020

Abstract

In this paper, modified q-homotopy analysis method (mq-HAM) is proposed for solving high-order non-linear partial differential equations. This method improves the convergence of the series solution and overcomes the computing difficulty encountered in the q-HAM, so it is more accurate than nHAM which proposed in Hassan and El-Tawil, Saberi-Nik and Golchaman. The second- and third-order cases are solved as illustrative examples of the proposed method.

Key words: Non-linear partial differential equations, q-homotopy analysis method, modified q-homotopy analysis method

INTRODUCTION

Most phenomena in our world are essentially non-linear and are described by non-linear equations. It is still difficult to obtain accurate solutions of non-linear problems and often more difficult to get an analytic approximation than a numerical one of a given non-linear problem. In 1992, Liao ${ }^{[1]}$ employed the basic ideas of the homotopy in topology to propose a general analytic method for nonlinear problems, namely, homotopy analysis method (HAM). In recent years, this method has been successfully employed to solve many types of non-linear problems in science and engineering. ${ }^{[2-11]}$ All of these successful applications verified the validity, effectiveness, and flexibility of the HAM. The HAM contains a certain auxiliary parameter h which provides us with a simple way to adjust and control the convergence region and rate of convergence of the series solution. Moreover, by means of the so-called h-curve, it is easy to determine the valid regions of h to gain a convergent series solution. Hassan and El-Tawil ${ }^{[7]}$ presented a new technique of using HAM for solving high-order non-linear initial value problems (nHAM) by transform the nth-order non-linear differential equation to a system of n first-order equations. El-Tawil and Huseen ${ }^{[12]}$ established a method, namely, q-HAM which is a more general method of HAM. The q-HAM contains an auxiliary parameter n as well as h such that the case of $n=1$ (q-HAM; $n=1$) the standard HAM can be reached. The q-HAM has been successfully applied to numerous problems in science and engineering. ${ }^{[12-22]}$ Huseen and Grace ${ }^{[23]}$ presented modifications of q-HAM (mq-HAM). They tested the scheme on two second-order nonlinear exactly solvable differential equations. The aim of this paper is to apply the mq-HAM to obtain the approximate solutions of high-order non-linear problems by transform the nth-order non-linear differential equation to a system of n first-order equations. We note that the case of $n=1 \mathrm{in} \mathrm{mq-HAM}$ (mq-HAM; $n=1$), the $n H A M^{[7]}$ can be reached.

Address for correspondence:

Shaheed N. Huseen,
E-mail: shn_n2002@yahoo.com

ANALYSIS OF THE Q-HAM

Consider the following non-linear partial differential equation:

$$
\begin{equation*}
N[u(x, t)]=0 \tag{1}
\end{equation*}
$$

Where, N is a non-linear operator, (x, t) denotes independent variables, and $u(x, t)$ is an unknown function. Let us construct the so-called zero-order deformation equation:

$$
\begin{equation*}
(1-n q) L\left[\varnothing(x, t ; q)-u_{0}(x, t)\right]=q h H(x, t) N[\varnothing(x, t ; q)] \tag{2}
\end{equation*}
$$

where $n \geq 1, q \in\left[0, \frac{1}{n}\right]$ denotes the so-called embedded parameter, L is an auxiliary linear operator with the property $L[f]=0$ when $f=0, h \neq 0$ is an auxiliary parameter, $H(x, t)$ denotes a non-zero auxiliary function. It is obvious that when $q=0$ and $q=\frac{1}{n}$ Equation (2) becomes

$$
\begin{equation*}
\varnothing(x, t ; 0)=u_{0}(x, t) \quad \text { and } \quad \varnothing\left(x, t ; \frac{1}{n}\right)=u(x, t) \tag{3}
\end{equation*}
$$

respectively. Thus, as q increases from 0 to $\frac{1}{n}$, the solution $\varnothing(x, t ; q)$ varies from the initial guess $u_{0}(x, t)$ to the solution (x, t). We may choose $u_{0}(x, t), L, h, H(x, t)$ and assume that all of them can be properly chosen so that the solution $\varnothing(x, t ; q)$ of Equation (2) exists for $q \in\left[0, \frac{1}{n}\right]$.
Now, by expanding $\varnothing(x, t ; q)$ in Taylor series, we have

$$
\begin{equation*}
\varnothing(x, t ; q)=u_{0}(x, t)+\sum_{m=1}^{+\infty} u_{m}(x, t) q^{m} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{m}(x, t)=\left.\frac{1}{m!} \frac{\partial^{m} \varnothing(x, t ; q)}{\partial q^{m}}\right|_{q=0} \tag{5}
\end{equation*}
$$

Next, we assume that $h, H(x, t), u_{0}(x, t), L$ are properly chosen such that the series (4) converges at $q=\frac{1}{n}$ and:

$$
\begin{equation*}
u(x, t)=\varnothing\left(x, t ; \frac{1}{n}\right)=u_{0}(x, t)+\sum_{m=1}^{+\infty} u_{m}(x, t)\left(\frac{1}{n}\right)^{m} \tag{6}
\end{equation*}
$$

We let

$$
u_{r}(x, t)=\left\{u_{0}(x, t), u_{1}(x, t), u_{2}(x, t), \ldots, u_{r}(x, t)\right\}
$$

Differentiating equation (2) m times with respect to q and then setting $q=0$ and dividing the resulting equation by m ! we have the so-called $m^{\text {th }}$ order deformation equation

$$
\begin{equation*}
L\left[u_{m}(x, t)-k_{m} u_{m-1}(x, t)\right]=h H(x, t) R_{m}\left(u_{m-1}^{-}(x, t)\right) \tag{7}
\end{equation*}
$$

where,

$$
\begin{equation*}
R_{m}\left(u_{m-1}^{-}(x, t)\right)=\left.\frac{1}{(m-1)!} \frac{\partial^{m-1}(N[\varnothing(x, t ; q)]-f(x, t))}{\partial q^{m-1}}\right|_{q=0} \tag{8}
\end{equation*}
$$

and

$$
k_{m}=\left\{\begin{array}{lr}
0 & m \leq 1 \tag{9}\\
n & \text { otherwise }
\end{array}\right.
$$

It should be emphasized that $u_{m}(x, t)$ for $m \geq 1$ is governed by the linear Equation (7) with linear boundary conditions that come from the original problem. Due to the existence of the factor $\frac{1^{m}}{n}$, more chances for convergence may occur or even much faster convergence can be obtained better than the standard HAM. It should be noted that the case of $n=1$ in Equation (2), standard HAM can be reached. The q-HAM can be reformatted as follows:
We rewrite the nonlinear partial differential equation (1) in the form

$$
\begin{gather*}
L u(x, t)+A u(x, t)+B u(x, t)=0 \\
u(x, 0)=f_{0}(x), \\
\left.\frac{\partial u(x, t)}{\partial t}\right|_{t=0}=f_{1}(x), \tag{10}\\
\left.\frac{\partial^{(z-1)} u(x, t)}{\partial^{(z-1)}}\right|_{(t=0)}=f_{(z-1)}(x),
\end{gather*}
$$

Where, $L=\frac{\partial^{z}}{\left(\partial t^{z}\right)}, z=1,2, \ldots$ is the highest partial derivative with respect to t, A is a linear term, and B is non-linear term. The so-called zero-order deformation Equation (2) becomes:

$$
\begin{equation*}
(1-n q) L\left[\varnothing(x, t ; q)-u_{0}(x, t)\right]=q h H(x, t)(L u(x, t)+A u(x, t)+B u(x, t)) \tag{11}
\end{equation*}
$$

we have the $m^{\text {th }}$ order deformation equation

$$
\begin{equation*}
L\left[u_{m}(x, t)-k_{m} u_{m-1}(x, t)\right]=h H(x, t)\left(L u_{m-1}(x, t)+A u_{m-1}(x, t)+B\left(u_{m-1}^{-}(x, t)\right)\right) \tag{12}
\end{equation*}
$$

and hence

$$
\begin{equation*}
u_{m}(x, t)=k_{m} u_{m-1}(x, t)+h L^{-1}\left[H(x, t)\left(L u_{m-1}(x, t)+A u_{m-1}(x, t)+B\left(u_{m-1}^{-}(x, t)\right)\right)\right] \tag{13}
\end{equation*}
$$

Now, the inverse operator L^{-1} is an integral operator which is given by

$$
\begin{equation*}
L^{-1}(.)=\iint \ldots \int(.) \underbrace{d t d t \ldots d t}_{z \text { times }}+c_{1} t^{z-1}+c_{2} t^{z-2}+\ldots+c_{z} \tag{14}
\end{equation*}
$$

where $c_{1}, c_{2}, \ldots, c_{z}$ are integral constants.
To solve (10) by means of q-HAM, we choose the initial approximation:

$$
\begin{equation*}
u_{0}(x, t)=f_{0}(x)+f_{1}(x) t+f_{2}(x) \frac{t^{2}}{2!}+\ldots+f_{z-1}(x) \frac{t^{z-1}}{(z-1)!} \tag{15}
\end{equation*}
$$

Let $(x, t)=1$, by means of Equations (14) and (15) then Equation (13) becomes

$$
\begin{equation*}
u_{m}(x, t)=k_{m} u_{m-1}(x, t)+h \int_{0}^{t} \int_{0}^{t} \cdots \int_{0}^{t}\left(\frac{\partial^{z} u_{m-1}(x, \tau)}{\partial \tau^{z}}+A u_{m-1}(x, \tau)+B\left(u_{m-1}^{-}(x, \tau)\right)\right) \underbrace{d \tau d \tau \ldots d \tau}_{z \text { times }} \tag{16}
\end{equation*}
$$

Now from times $\int_{0}^{t} \int_{0}^{t} \cdots \int_{0}^{t}(\frac{\partial^{z} u_{m-1}(x, \tau)}{\partial \tau^{z}} \underbrace{d \tau d \tau \ldots d \tau}_{z \text { times }}$, we observe that there are repeated computations in each step which caused more consuming time. To cancel this, we use the following modification to (16):

$$
\begin{align*}
& u_{m}(x, t)=k_{m} u_{m-1}(x, t)+h \int_{0}^{t} \int_{0}^{t} \cdots \int_{0}^{t} \frac{\partial^{z} u_{m-1}(x, \tau)}{\partial \tau^{z}} \underbrace{d \tau d \tau \ldots d \tau}_{z \text { times }}+h \\
& \int_{0}^{t} \int_{0}^{t} \cdots \int_{0}^{t}\left(A u_{m-1}(x, \tau)+B\left(u_{m-1}^{-}(x, \tau)\right)\right) \underbrace{d \tau d \tau \ldots d \tau}_{z \text { times }} \\
& =k_{m} u_{m-1}(x, t)+h u_{m-1}(x, t)-h\left(u_{m-1}(x, 0)+t \frac{\partial u_{m-1}(x, 0)}{\partial t}+\ldots+\frac{t^{z-1}}{(z-1)!} \frac{\partial^{z-1} u_{m-1}(x, 0)}{\partial t^{z-1}}\right)+ \\
& +h \int_{0}^{t} \int_{0}^{t} \cdots \int_{0}^{t}\left(A u_{m-1}(x, \tau)+B\left(u_{m-1}^{-}(x, \tau)\right)\right) \underbrace{d \tau d \tau \ldots d \tau}_{z \text { times }} \tag{17}
\end{align*}
$$

Now, for $m=1, k_{m}=0$ and

$$
\begin{aligned}
& u_{0}(x, 0)+t \frac{\partial u_{0}(x, 0)}{\partial t}+\frac{t^{2}}{2!} \frac{\partial^{2} u_{0}(x, 0)}{\partial t^{2}} \ldots+\frac{t^{z-1}}{(z-1)!} \frac{\partial^{z-1} u_{0}(x, 0)}{\partial t^{z-1}} \\
& =f_{0}(x)+f_{1}(x) t+f_{2}(x) \frac{t^{2}}{2!}+\ldots+f_{z-1}(x) \frac{t^{z-1}}{(z-1)!}=u_{0}(x, t)
\end{aligned}
$$

Substituting this equality into Equation (17), we obtain

$$
\begin{equation*}
u_{1}(x, t)=h \int_{0}^{t} \int_{0}^{t} \cdots \int_{0}^{t}\left(A u_{0}(x, \tau)+B\left(u_{0}(x, \tau)\right)\right) \underbrace{d \tau d \tau \ldots d \tau}_{z \text { times }} \tag{18}
\end{equation*}
$$

For $m>1, k_{m}=n$ and

$$
u_{m}(x, 0)=0, \frac{\partial u_{m}(x, 0)}{\partial t}=0, \frac{\partial^{2} u_{m}(x, 0)}{\partial t^{2}}=0, \ldots, \frac{\partial^{z-1} u_{m}(x, 0)}{\partial t^{z-1}}=0
$$

Substituting this equality into Equation (17), we obtain

$$
\begin{equation*}
u_{m}(x, t)=(n+h) u_{m-1}(x, t)+h \int_{0}^{t} \int_{0}^{t} \cdots \int_{0}^{t}\left(A u_{m-1}(x, \tau)+B\left(u_{m-1}^{-}(x, \tau)\right)\right) \underbrace{d \tau d \tau \ldots d \tau}_{z \text { times }} \tag{19}
\end{equation*}
$$

We observe that the iteration in Equation (19) does not yield repeated terms and is also better than the iteration in Equation (16).
The standard $\mathrm{q}-\mathrm{HAM}$ is powerful when $z=1$, and the series solution expression by $\mathrm{q}-\mathrm{HAM}$ can be written in the form

$$
\begin{equation*}
u(x, t ; n ; h) \cong U_{M}(x, t ; n ; h)=\sum_{i=0}^{M} u_{i}(x, t ; n ; h)\left(\frac{1}{n}\right)^{i} \tag{20}
\end{equation*}
$$

However, when $z \geq 2$, there are too much additional terms where harder computations and more time consuming are performed. Hence, the closed form solution needs more number of iterations.

THE PROPOSED MQ-HAM

When $z \geq 2$, we rewrite Equation (1) as the following system of the first-order differential equations

$$
\begin{gather*}
u_{t}=u_{1} \tag{21}\\
u 1_{t}=u 2
\end{gather*}
$$

Set the initial approximation

$$
u\{z-1\}_{t}=-A u(x, t)-B u(x, t)
$$

$$
\begin{gather*}
u_{0}(x, t)=f_{0}(x), \\
u 1_{0}(x, t)=f_{1}(x), \\
\vdots \tag{22}\\
u\{\mathrm{z}-1\}_{0}(x, t)=f(z-1)(x)
\end{gather*}
$$

Using the iteration formulas (18) and (19) as follows

$$
\begin{gather*}
u_{1}(x, t)=h \int_{0}^{t}\left(-u 1_{0}(x, \tau)\right) d \tau, \\
u 1_{1}(x, t)=h \int_{0}^{t}\left(-u 2_{0}(x, \tau)\right) d \tau \tag{23}\\
\vdots \\
u\{z-1\}_{1}(x, t)=h \int_{0}^{t}\left(A u_{0}(x, \tau)+B\left(u_{0}(x, \tau)\right)\right) d \tau
\end{gather*}
$$

For $m>1, k_{m}=n$ and

$$
u_{m}(x, 0)=0, u 1_{m .}(x, 0)=0, u 2_{m}(x, 0)=0, \ldots, u\{z-1\}_{m}(x, 0)=0
$$

Substituting in Equation (17), we obtain

$$
\begin{gather*}
u_{m}(x, t)=(n+h) u_{m-1}(x, t)+h \int_{0}^{t}\left(-u 1_{m-1}(x, \tau)\right) d \tau, \\
u 1_{m}(x, t)=(n+h) u 1_{m-1}(x, t)+h \int_{0}^{t}\left(-u 2_{m-1}(x, \tau)\right) d \tau \tag{24}\\
\vdots \\
u\{z-1\}_{m}(x, t)=(n+h) u\{z-1\}_{m-1}(x, t)+h \int_{0}^{t}\left(A u_{m-1}(x, \tau)+B\left(u_{m-1}(x, \tau)\right)\right) d \tau
\end{gather*}
$$

To illustrate the effectiveness of the proposed mq-HAM, comparison between mq-HAM and the standard q -HAM is illustrated by the following examples.

ILLUSTRATIVE EXAMPLES ${ }^{[8,9]}$

We choose the following two cases when $z=2$ and $z=3$.
Case 1. $z=2$
Consider the modified Boussinesq equation

$$
\begin{equation*}
u_{t t}-u_{x x x x}-\left(u^{3}\right)_{x x}=0 \tag{25}
\end{equation*}
$$

subject to the initial conditions

$$
\begin{gather*}
u(x, 0)=\sqrt{2} \operatorname{sech}[x] \\
u_{t}(x, 0)=\sqrt{2} \operatorname{sech}[x] \tanh [x] \tag{26}
\end{gather*}
$$

The exact solution is

$$
\begin{equation*}
u(x, t)=\sqrt{2} \operatorname{sech}[x-t] \tag{27}
\end{equation*}
$$

This problem solved by HAM (q-HAM $[n=1]$) and nHAM (mq-HAM [$n=1]$), ${ }^{[7]}$ so we will solve it by $\mathrm{q}-\mathrm{HAM}$ and $\mathrm{mq}-\mathrm{HAM}$ and compare the results.

IMPLEMENTATION OF Q-HAM

We choose the initial approximation

$$
\begin{gather*}
u_{0}(x, t)=u(x, 0)+t u_{t}(x, 0) \\
=\sqrt{2} \operatorname{sech}[x]+t \sqrt{2} \operatorname{sech}[x] \tanh [x] \tag{28}
\end{gather*}
$$

and the linear operator:

$$
\begin{equation*}
L[\varnothing(x, t ; q)]=\frac{\partial^{2} \varnothing(x, t ; q)}{\partial t^{2}}, \tag{29}
\end{equation*}
$$

with the property:

$$
\begin{equation*}
L\left[c_{0}+c 1 t\right]=0, \tag{30}
\end{equation*}
$$

where c_{0} and c_{1} are real constants.
We define the nonlinear operator by

$$
\begin{equation*}
N[\varnothing(x, t ; q)]=\frac{\partial^{2} \varnothing(x, t ; q)}{\partial t^{2}}-\frac{\partial^{4} \varnothing(x, t ; q)}{\partial x^{4}}-\frac{\partial^{2}}{\partial x^{2}}[\varnothing(x, t ; q)]^{3} \tag{31}
\end{equation*}
$$

According to the zero-order deformation Equation (2) and the mth-order deformation equation (7) with

$$
\begin{equation*}
R\left(u_{m-1}^{-}\right)=\frac{\partial^{2} u_{m-1}}{\partial t^{2}}-\frac{\partial^{4} u_{m-1}}{\partial x^{4}}-\frac{\partial^{2}}{\partial x^{2}}\left(\sum_{i=0}^{m-1} u_{m-1-i} \sum_{j=0}^{i} u_{j} u_{i-j}\right) \tag{32}
\end{equation*}
$$

The solution of the mth-order deformation equation (7) for $m \geq 1$ takes the form

$$
\begin{equation*}
u_{m}(x, t)=k_{m} u_{m-1}(x, t)+h \iint R\left(u_{m-1}^{-}\right) d t d t+c_{0}+c_{1} t \tag{33}
\end{equation*}
$$

where the coefficients c_{0} and c_{1} are determined by the initial conditions:

$$
\begin{equation*}
u_{m}(x, 0)=0, \quad \frac{\partial u_{m}(x, 0)}{\partial t}=0 \tag{34}
\end{equation*}
$$

Obviously, we obtain

$$
\begin{aligned}
& u_{1}(x, t)=-\frac{1}{960 \sqrt{2}} h t^{2} \operatorname{Sech}[x]^{8}\left(135\left(-5+56 t^{2}\right) \operatorname{Cosh}[x]-15\left(19+412 t^{2}\right) \operatorname{Cosh}[3 x]-15 \operatorname{Cosh}[5 x]+\right. \\
& 540 t^{2} \operatorname{Cosh}[5 x]+15 \operatorname{Cosh}[7 x]-215 t \operatorname{Sinh}[x]+ \\
& 6120 t^{3} \operatorname{Sinh}[x]-315 t \operatorname{Sinh}[3 x]-1836 t^{3} \operatorname{Sinh}[3 x]-95 t \operatorname{Sinh}[5 x]+ \\
& \left.108 t^{3} \operatorname{Sinh}[5 x]+5 t \operatorname{Sinh}[7 x]\right)
\end{aligned}
$$

$$
\begin{align*}
& u_{2}(x, t)=-\frac{1}{960 \sqrt{2}} h(h+n) t^{2} \operatorname{Sech}[x]^{8}\left(135\left(-5+56 t^{2}\right) \operatorname{Cosh}[x]\right. \\
& -15\left(19+412 t^{2}\right) \operatorname{Cosh}[3 x]-15 \operatorname{Cosh}[5 x]+540 t^{2} \operatorname{Cosh}[5 x]+15 \operatorname{Cosh}[7 x] \\
& -215 t \operatorname{Sinh}[x]+6120 t^{3} \operatorname{Sinh}[x]-315 t \operatorname{Sinh}[3 x]-1836 t^{3} \operatorname{Sinh}[3 x] \tag{34}\\
& \left.-95 t \operatorname{Sinh}[5 x]+108 t^{3} \operatorname{Sinh}[5 x]+5 t \operatorname{Sinh}[7 x]\right) \\
& +h\left(-\frac{1}{160 \sqrt{2}} h t \operatorname{Sech}[x]^{10}(1+\operatorname{Cosh}[2 x]+\operatorname{Sinh}[2 x])^{3}(1-6 \operatorname{Cosh}[2 x]+\ldots\right.
\end{align*}
$$

$u_{m}(x, t),(m=3,4, \ldots)$ can be calculated similarly. Then, the series solution expression by q-HAM can be written in the form:

$$
\begin{equation*}
u(x, t ; n ; h) \cong U_{M}(x, t ; n ; h)=\sum_{i=0}^{M} u_{i}(x, t ; n ; h)\left(\frac{1}{n}\right)^{i} \tag{35}
\end{equation*}
$$

Equation (35) is a family of approximation solutions to the problem (25) in terms of the convergence parameters h and n. To find the valid region of h, the h curves given by the $3^{\text {rd }}$ order q-HAM approximation at different values of x, t, and n are drawn in Figures 1-3. This figure shows the interval of h which the value of $U_{3}(x, t ; n)$ is constant at certain x, t, and n , We choose the line segment nearly parallel to the horizontal axis as a valid region of h which provides us with a simple way to adjust and control the convergence region. Figures 4 and 5 show the comparison between U_{3} of q-HAM using different values of n with the solution (27). The absolute errors of the $3^{\text {rd }}$ order solutions q-HAM approximate using different values of n are shown in Figures 6 and 7.

IMPLEMENTATION OF MQ-HAM

To solve Equation (25) by mq-HAM, we construct system of differential equations as follows $u_{t}(x, t)=v(x, t)$,

$$
\begin{equation*}
v_{t}(x, t)=\frac{\partial^{4} u(x, t)}{\partial x^{4}}+\frac{\partial^{2}}{\partial x^{2}}[u(x, t)]^{3} \tag{36}
\end{equation*}
$$

with initial approximations

$$
\begin{equation*}
u_{0}(x, t)=\sqrt{2} \operatorname{sech}[x], \quad v_{0}(x, t)=\sqrt{2} \operatorname{sech}[x] \tanh [x] \tag{37}
\end{equation*}
$$

and the auxiliary linear operators

Figure 1: h curve for the (q-HAM; $n=1$) (HAM) approximation solution $U_{3}(x, t ; 1)$ of problem (25) at different values of x and t

Figure 2: h curve for the (q-HAM; $n=50$) approximation solution $U_{3}(x, t ; 50)$ of problem (25) at different values of x and t
(

Figure 3: h curve for the (q-HAM; $n=100$) approximation solution $U_{3}(x, t ; 100)$ of problem (25) at different values of x and t

Figure 4: Comparison between U_{3} of q-HAM $(n=1,2,5,10,20,50,100)$ with exact solution of Equation (25) at $x=0$ with $h=-1, h=-1.8, h=-4.5,(h=-8, h=-15.2, h=-37, h=-70)$, respectively

$$
\begin{equation*}
L u(x, t)=\frac{\partial u(x, t)}{\partial t}, \quad L v(x, t)=\frac{\partial v(x, t)}{\partial t} \tag{38}
\end{equation*}
$$

and

$$
A u_{m-1}(x, t)=-\frac{\partial^{4} u_{m-1}(x, t)}{\partial x^{4}}
$$

Figure 5: Comparison between U_{3} of $\mathrm{q}-\mathrm{HAM}(n=1,2,5,10,20,50,100)$ with exact solution of Equation (25) at $x=1$ with ($h=-1, h=-1.8, h=4.5, h=-8, h=-15.2, h=-37, h=-70$), respectively

Figure 6: The absolute error of U_{3} of q-HAM $(n=1,2,5,10,20,50,100)$ for problem (25) at $x=0$ using ($h=1, h=1.8$, $h=-4.5, h=-8, h=-15.2, h=-37, h \stackrel{3}{=} 70$), respectively

Figure 7: The absolute error of U_{3} of q-HAM $(n=1,2,5,10,20,50,100)$ for problem (25) at $x=1$ using ($h=-1, h=-1.8$, $h=-4.5, h=-8, h=-15.2, h=-37, h=-70$), respectively

$$
\begin{equation*}
B u_{m-1}^{-}(x, t)=-\frac{\partial^{2}}{\partial x^{2}}\left(\sum_{i=0}^{m-1} u_{m-1-i}(x, t) \sum_{j=0}^{i} u_{j}(x, t) u_{i-j}(x, t)\right) \tag{39}
\end{equation*}
$$

From Equations (23) and (24) we obtain:

$$
\begin{equation*}
u_{1}(x, t)=h \coprod_{0}^{t}\left(-v_{0}(x, \tau)\right) d \tau \tag{40}
\end{equation*}
$$

$$
v_{1}(x, t)=h \int_{0}^{t}\left(-\frac{\partial^{4} u_{0}(x, \tau)}{\partial x^{4}}-\frac{\partial^{2}}{\partial x^{2}}\left(u_{0}(x, \tau)\right)^{3}\right) d \tau .
$$

Now, form ≥ 2, we get

$$
\begin{gather*}
u_{m}(x, t)=(n+h) u_{m-1}(x, t)+h \int_{0}^{t}\left(-v_{m-1}(x, \tau)\right) d \tau \tag{41}\\
v_{m}(x, t)=(n+h) v_{m-1}(x, t)+h \int_{0}^{t}\left(-\frac{\partial^{4} u_{m-1}(x, \tau)}{\partial x^{4}}-\frac{\partial^{2}}{\partial x^{2}}\left(\sum_{i=0}^{m-1} u_{m-1-i}(x, \tau) \sum_{j=0}^{i} u_{j}(x, \tau) u_{i-j}(x, \tau)\right)\right) d \tau
\end{gather*}
$$

And the following results are obtained

$$
\begin{gathered}
u_{1}(x, t)=-\sqrt{2} h t \operatorname{Sech}[x] \operatorname{Tanh}[x] \\
v_{1}(x, t)=h t\left(\sqrt{2} \operatorname{Sech}[x]^{5}-\sqrt{2} \operatorname{Sech}[x] \operatorname{Tanh}[x]^{4}\right) \\
u_{2}(x, t)=\frac{h^{2} t^{2}(-3+\operatorname{Cosh}[2 x]) \operatorname{Sech}[x]^{3}}{2 \sqrt{2}}-\sqrt{2} h(h+n) t \operatorname{Sech}[x] \operatorname{Tanh}[x] \\
v_{2}(x, t)=\frac{h^{2} t^{2}(-11+\operatorname{Cosh}[2 x]) \operatorname{Sech}[x]^{3} \operatorname{Tanh}[x]}{2 \sqrt{2}}+h(h+n) t\left(\sqrt{2} \operatorname{Sech}[x]^{5}-\sqrt{2} \operatorname{Sech}[x] \operatorname{Tanh}[x]^{4}\right)
\end{gathered}
$$

$u_{m}(x, t),(m=3,4, \ldots)$ can be calculated similarly. Then, the series solution expression by mq- HAM can be written in the form:

$$
\begin{equation*}
u(x, t ; n ; h) \cong U_{M}(x, t ; n ; h)=\sum_{i=0}^{M} u_{i}(x, t ; n ; h)\left(\frac{1}{n}\right)^{i} \tag{42}
\end{equation*}
$$

Equation (42) is a family of approximation solutions to the problem (25) in terms of the convergence parameters h and n. To find the valid region of h, the h curves given by the $3^{\text {rd }}$ order mq-HAM approximation at different values of x, t, and n are drawn in Figures 8-10. This figure shows the interval of h which the value of $U_{3}(x, t ; n)$ is constant at certain x, t, and n. We choose the line segment nearly parallel to the horizontal axis as a valid region of h which provides us with a simple way to adjust and control the convergence region. Figure 11 shows the comparison between U_{3} of mq-HAM using different values of n with the solution (27). The absolute errors of the $3^{\text {th }}$ order solutions mq-HAM approximate using different values of n are shown in Figure 12. The results obtained by mq-HAM are more accurate than

Figure 8: h curve for the (mq-HAM; $n=1$) approximation solution $U_{3}(x, t ; 1)$ of problem (25) at different values of x and t
q-HAM at different values of x and n, so the results indicate that the speed of convergence for mq-HAM with $n>1$ is faster in comparison with $n=1$ (nHAM). The results show that the convergence region of series solutions obtained by mq-HAM is increasing as q is decreased, as shown in Figures 11 and 12. By increasing the number of iterations by mq-HAM, the series solution becomes more accurate, more efficient and the interval of t (convergent region) increases, as shown in Figures 13-20.
Case 2. $\mathrm{z}=3$
Consider the non-linear initial value problem:

$$
\begin{equation*}
u_{t t}(x, t)+u_{x}(x, t)-2 x(u(x, t))^{2}+6(u(x, t))^{4}=0 \tag{43}
\end{equation*}
$$

(

Figure 9: h curve for the (mq-HAM; $n=50$) approximation solution $U_{3}(x, t ; 50)$ of problem (25) at different values of x and t
(

Figure 10: h curve for the (mq-HAM; $n=100$) approximation solution $U_{3}(x, t ; 100)$ of problem (25) at different values of x and t

Figure 11: Comparison between $U_{3}(x, t)$ of mq-HAM $(n=1,2,5,10,20,50,100)$ with exact solution of Equation (25) at $x=0$ with ($h=-1, h=-1.8, h=-4.5, h=-8, h=-15.2, h=-37, h=-70$), respectively

Figure 12: The absolute error of U_{3} of $\mathrm{mq}-\operatorname{HAM}(n=1,2,5,10,20,50,100)$ for problem (25) at $x=0$ using $(h=-1, h=-1.8$, $h=4.5, h=8, h=-15.2, h=37, h=-70$), respectively

Figure 13: The comparison between the $U_{3}(x, t)$ of q-HAM $(n=1), U_{3}(x, t)$ of mq- $\operatorname{HAM}(n=1), U_{5}(x, t)$ of mq-HAM $(n=1)$, and the exact solution of Equation (25) at $h=-1$ and $x=0$

Figure 14: The comparison between the $U_{3}(x, t)$ of q-HAM $(n=1), U_{3}(x, t)$ of mq-HAM $(n=1), U_{5}(x, t)$ of mq-HAM ($n=1$), and the exact solution of Equation (25) at $h=-1$ and $x=1$

Subject to the initial conditions

$$
\begin{equation*}
u(x, 0)=-\frac{1}{x^{2}}, u_{t}(x, 0)=-\frac{1}{x^{4}}, u_{t t}(x, 0)=-\frac{2}{x^{6}} \tag{44}
\end{equation*}
$$

The exact solution is

$$
\begin{equation*}
u(x, t)=\frac{1}{-x^{2}+t} \tag{45}
\end{equation*}
$$

Figure 15: The comparison between the $U_{3}(x, t)$ of q-HAM $(n=100), U_{3}(x, t)$ of mq-HAM $(n=100), U_{5}(x, t)$ of mq-HAM ($n=100$), and the exact solution of Equation (25) at $h=-70$ and $x=0$

Figure 16: The comparison between the $U_{3}(x, t)$ of q-HAM $(n=100), U_{3}(x, t)$ of mq-HAM $(n=100), U_{5}(x, t)$ of mq-HAM ($n=100$), and the exact solution of Equation (25) at $h=70$ and $x=1$

Figure 17: The comparison between the absolute error of $U_{3}(x, t)$ of q-HAM $(n=1)$ and $U_{3}(x, t)$ of mq-HAM $(n=1)$ of Equation (25) at $h=-1, x=0$ and $-1 \leq t \leq 1$

This problem solved by HAM ($\mathrm{q}-\mathrm{HAM}(n=1)$) and nHAM (mq-HAM $(n=1)$), ${ }^{[7]}$ so we will solve it by $\mathrm{q}-\mathrm{HAM}$ and $\mathrm{mq}-\mathrm{HAM}$ and compare the results.

IMPLEMENTATION OF Q-HAM

We choose the initial approximation

$$
\begin{equation*}
u_{0}(x, t)=-\frac{1}{x^{2}}-\frac{t}{x^{4}}-\frac{t^{2}}{x^{6}} \tag{46}
\end{equation*}
$$

Figure 18: The comparison between the absolute error of $U_{3}(x, t)$ of q-HAM $(n=100)$ and $U_{3}(x, t)$ of mq-HAM ($n=100$) of Equation (25) at $h=70, x=0$ and $-1 \leq t \leq 1$

Figure 19: The comparison between the absolute error of $U_{3}(x, t)$ of mq-HAM $(n=1)$ and $U_{5}(x, t)$ of mq-HAM $(n=1)$ of Equation (25) at $h=-1, x=1$ and $-1.5 \leq t \leq 1.5$

Figure 20: The comparison between the absolute error of $U_{3}(x, t)$ of mq-HAM $(n=100)$ and $U_{5}(x, t)$ of mq-HAM ($n=100$) of Equation (25) at $h=-70, x=1$ and $-1.5 \leq t \leq 1.5$
and the linear operator:

$$
\begin{equation*}
L[\varnothing(x, t ; q)]=\frac{\partial^{3} \varnothing(x, t ; q)}{\partial t^{3}} \tag{47}
\end{equation*}
$$

with the property:

$$
\begin{equation*}
L\left[c_{0}+c_{1} t+c_{2} t^{2}\right]=0 \tag{48}
\end{equation*}
$$

where c_{0}, c_{1}, and c_{2} are real constants.

Next, we define the nonlinear operator by

$$
\begin{equation*}
N[\varnothing(x, t ; q)]=\frac{\partial^{3} \varnothing(x, t ; q)}{\partial t^{3}}+\frac{\partial \varnothing(x, t ; q)}{\partial x}-2 x[\varnothing(x, t ; q)]^{2}+6[\varnothing(x, t ; q)]^{4} \tag{49}
\end{equation*}
$$

According to the zero-order deformation Equation (2) and the $m^{\text {th }}$-order deformation equation (7) with

$$
\begin{equation*}
R\left(u_{m-1}^{-}\right)=\frac{\partial^{3} u_{m-1}}{\partial t^{3}}+\frac{\partial u_{m-1}}{\partial x}-2 x \sum_{i=0}^{m-1} u_{i} u_{m-1-i}+6 \sum_{i=0}^{m-1} u_{m-1-i} \sum_{j=0}^{i} u_{i-j} \sum_{k=0}^{j} u_{k} u_{j-k} \tag{50}
\end{equation*}
$$

The solution of the $m^{\text {th }}$-order deformation equation (7) for $m \geq 1$ becomes:

$$
\begin{equation*}
u_{m}(x, t)=k_{m} u_{m-1}(x, t)+h \iiint R\left(u_{m-1}^{-}\right) d t d t d t+c_{0}+c_{1} t+c_{2} t^{2} \tag{51}
\end{equation*}
$$

where the coefficients c_{0}, c_{1} and c_{2} are determined by the initial conditions:

$$
\begin{equation*}
u_{m}(x, 0)=0, \quad \frac{\partial u_{m}(x, 0)}{\partial t}=0, \frac{\partial^{2} u_{m}(x, 0)}{\partial t^{2}}=0 \tag{52}
\end{equation*}
$$

We now successively obtain:

$$
\begin{aligned}
& u_{1}(x, t)=\frac{1}{2310 x^{24}} h t^{3}\left(14 t^{8}+77 t^{7} x^{2}+275 t^{6} x^{4}+660 t^{5} x^{6}\right. \\
& \left.+2310 t^{2} x^{12}+2310 t x^{14}+2310 x^{16}-22 t^{4} x^{8}\left(-57+x^{5}\right)-77 t^{3} x^{10}\left(-24+x^{5}\right)\right) \\
& u_{2}(x, t)=\frac{1}{2310 x^{24}} h n t^{3}\left(14 t^{8}+77 t^{7} x^{2}+275 t^{6} x^{4}+660 t^{5} x^{6}+\right. \\
& \left.2310 t^{2} x^{12}+2310 t x^{14}+2310 x^{16}-22 t^{4} x^{8}\left(-57+x^{5}\right)-77 t^{3} x^{10}\left(-24+x^{5}\right)\right) \\
& -\frac{1}{24443218800 x^{42}} h^{2} t^{3}\left(519792 t^{17}+5197920 t^{16} x^{2}+30603300 t^{15} x^{4}+\right. \\
& 127288980 t^{14} x^{6}+10475665200 t^{5} x^{24}-\ldots
\end{aligned}
$$

$u_{m}(x, t),(m=3,4, \ldots)$ can be calculated similarly. Then, the series solution expression by q - HAM can be written in the form:

$$
\begin{equation*}
u(x, t ; n ; h) \cong U_{M}(x, t ; n ; h)=\sum_{i=0}^{M} u_{i}(x, t ; n ; h)\left(\frac{1}{n}\right)^{i} \tag{53}
\end{equation*}
$$

Equation (53) is a family of approximation solutions to the problem (43) in terms of the convergence parameters h and n. To find the valid region of h, the h curves given by the $5^{\text {th }}$ order q -HAM approximation at different values of x, t, and n are drawn in Figures 21-23. This figure shows the interval of h which the value of U_{5} $(x, t ; n)$ is constant at certain x, t and n. We choose the line segment nearly parallel to the horizontal axis as a valid region of h which provides us with a simple way to adjust and control the convergence region. Figure 24 shows the comparison between U_{5} of q-HAM using different values of n with the solution 45 . The absolute errors of the $5^{\text {th }}$ order solutions q-HAM approximate using different values of n are shown in Figure 25.

IMPLEMENTATION OF MQ-HAM

To solve Equation (43) by mq-HAM, we construct system of differential equations as follows

$$
\begin{align*}
& u_{t}(x, t)=v(x, t), \\
& v_{t}(x, t)=w(x, t) \tag{54}
\end{align*}
$$

With initial approximations

$$
\begin{equation*}
u_{0}(x, t)=-\frac{1}{x^{2}}, \quad v_{0}(x, t)=-\frac{1}{x^{4}}, \quad w_{0}(x, t)=-\frac{2}{x^{6}} \tag{55}
\end{equation*}
$$

Figure 21: h curve for the (q-HAM; $n=1$) (HAM) approximation solution $U_{5}(x, t ; 1)$ of problem (43) at different values of x and t
(

Figure 22: h curve for the $(\mathrm{q}-\mathrm{HAM} ; n=20)$ approximation solution $U_{5}(x, t ; 20)$ of problem (43) at different values of x and t

Figure 23: h curve for the (q-HAM; $n=100$) approximation solution $U_{5}(x, t ; 100)$ of problem (43) at different values of x and t

And the auxiliary linear operators

$$
\begin{equation*}
L u(x, t)=\frac{\partial u(x, t)}{\partial t}, L v(x, t)=\frac{\partial v(x, t)}{\partial t}, L w(x, t)=\frac{\partial w(x, t)}{\partial t} \tag{56}
\end{equation*}
$$

And

$$
\begin{gather*}
A u_{m-1}(x, t)=\frac{\partial u_{m-1}(x, t)}{\partial x} \\
B u_{m-1}^{-}(x, t)=-2 x \sum_{i=0}^{m-1} u_{i} u_{m-1-i}+6 \sum_{i=0}^{m-1} u_{m-1-i} \sum_{j=0}^{i} u_{i-j} \sum_{k=0}^{j} u_{k} u_{j-k} \tag{57}
\end{gather*}
$$

Figure 24: Comparison between U_{5} of $\mathrm{q}-\operatorname{HAM}(n=1,2,5,10,20,50,100)$ with exact solution of Equation (43) at $x=4$ with ($h=-1, h=-1.97, h=-4.83, h=-8.45, h=-18.3, h=44.75, h=-86$), respectively

Figure 25: The absolute error of U_{5} of $\mathrm{q}-\mathrm{HAM}(n=1,2,5,10,20,50,100)$ for problem (43) at $x=4$ using $h=-1, h=-1.97$, $h=4.83, h=-8.45, h=-18.3, h=-44.75, h=-86$), respectively

From Equations (23) and (24) we obtain

$$
\begin{gather*}
u_{1}(x, t)=h \int_{0}^{t}\left(-v_{0}(x, \tau)\right) d \tau \\
v_{1}(x, t)=h \int_{0}^{t}\left(-w_{0}(x, \tau)\right) d \tau \tag{58}\\
w_{1}(x, t)=h \int_{0}^{t}\left(\frac{\partial u_{0}(x, \tau)}{\partial x}-2 x\left(u_{0}(x, \tau)\right)^{2}+6\left(u_{0}(x, \tau)\right)^{4}\right) d \tau
\end{gather*}
$$

For $m \geq 2$,

$$
\begin{gather*}
u_{m}(x, t)=(n+h) u_{m-1}(x, t)+h \int_{0}^{t}\left(-v_{m-1}(x, \tau)\right) d \tau \\
v_{m}(x, t)=(n+h) v_{m-1}(x, t)+h \int_{0}^{t}\left(-w_{m-1}(x, \tau)\right) d \tau \tag{59}\\
w_{m}(x, t)=(n+h) w_{m-1}(x, t)+h \int_{0}^{t} \\
\left(\frac{\partial u_{m-1}(x, t)}{\partial x}-2 x \sum_{i=0}^{m-1} u_{i} u_{m-1-i}+6 \sum_{i=0}^{m-1} u_{m-1-i} \sum_{j=0}^{i} u_{i-j} \sum_{k=0}^{j} u_{k} u_{j-k}\right) d \tau
\end{gather*}
$$

The following results are obtained

$$
\begin{gathered}
u_{1}(x, t)=\frac{h t}{x^{4}} \\
u_{2}(x, t)=-\frac{h^{2} t^{2}}{x^{6}}+\frac{h(h+n) t}{x^{4}} \\
u_{3}(x, t)=h\left(\frac{h^{2} t^{3}}{x^{8}}-\frac{h^{2} t^{2}}{x^{6}}-\frac{h n t^{2}}{x^{6}}\right)+(h+n)\left(-\frac{h^{2} t^{2}}{x^{6}}+\frac{h(h+n) t}{x^{4}}\right)
\end{gathered}
$$

$u_{m}(x, t),(m=4,5, \ldots)$ can be calculated similarly. Then, the series solution expression by mq-HAM can be written in the form:

$$
\begin{equation*}
u(x, t ; n ; h) \cong U_{M}(x, t ; n ; h)=\sum_{i=0}^{M} u_{i}(x, t ; n ; h)\left(\frac{1}{n}\right)^{i} \tag{60}
\end{equation*}
$$

Equation (60) is a family of approximation solutions to the problem (43) in terms of the convergence parameters hand n. To find the valid region ofh, the h curves given by the $5^{\text {th }}$ order mq-HAM approximation at different values of x, t, and n are drawn in Figures 26-28. This figure shows the interval of h which the value of $U_{5}(x, t ; n)$ is constant at certain x, t, and n. We choose the line segment nearly parallel to the horizontal axis as a valid region of h which provides us with a simple way to adjust and control the convergence region. Figure 29 shows the comparison between U_{5} of mq-HAM using different values of n with the solution (45). The absolute errors of the $5^{\text {th }}$ order solutions mq-HAM approximate using different values of n are shown in Figure 30. The results obtained by mq-HAM are more accurate than q-HAM at different values of x and n, so the results indicate that the speed of convergence for mq-HAM with $n>1$ is faster in comparison with $n=1$. (nHAM). The results show that the convergence region of series solutions obtained by mq-HAM is increasing as q is decreased, as shown in Figures 29-36.

Figure 26: h curve for the (mq-HAM; $n=1$) approximation solution $U_{5}(x, t ; 1)$ of problem (43) at different values of x and t

Figure 27: h curve for the (mq-HAM; $n=20$) approximation solution $U_{5}(x, t ; 20)$ of problem (43) at different values of x and t

By increasing the number of iterations by mq-HAM, the series solution becomes more accurate, more efficient and the interval of t (convergent region) increases, as shown in Figures 31-36.

Figure 28: h curve for the (mq-HAM; $n=100)$ approximation solution $U_{5}(x, t ; 100)$ of problem (43) at different values of x and t

Figure 29: Comparison between U_{5} of mq-HAM ($n=1,2,5,10,20,50,100$) with exact solution of Equation (43) at $x=4$ with ($h=-1, h=-1.97, h=-4.83, h=-9.45, h=-18.3, h=44.75, h=-86$), respectively

Figure 30: The absolute error of U_{5} of mq-HAM $(n=1,2,5,10,20,50,100)$ for problem (43) at $x=4,-20 \leq t \leq 5$ using $h=1$, $h=-1.97, h=-4.83, h=-9.45, h=-18.3, h=44.75, h=86$), respectively

Figure 31: The comparison between the $U_{5}(x, t)$ of q-HAM $(n=1), U_{3}(x, t)$ of mq-HAM $(n=1), U_{5}(x, t)$ of mq-HAM ($n=1$), $U_{7}(x, t)$ of mq-HAM ($n=1$), and the exact solution of Equation (43) at $h=-1$ and $x=4$

Figure 32: The comparison between the $U_{5}(x, t)$ of q-HAM $(n=20), U_{3}(x, t)$ of mq-HAM $(n=20), U_{5}(x, t)$ of mq-HAM $(n=20), U_{7}(x, t)$ of mq-HAM ($n=20$), and the exact solution of Equation (43) at $h=-18.3$ and $x=4$

Figure 33: The comparison between the $U_{5}(x, t)$ of q-HAM $(n=100), U_{3}(x, t)$ of mq-HAM $(n=100), U_{5}(x, t)$ of mq-HAM ($n=100$), $U_{7}(x, t)$ of mq-HAM ($n=100$), and the exact solution of (43) at $h=86$ and $x=4$

Figure 34: The comparison between the absolute error of $U_{5}(x, t)$ of q-HAM $(n=1), U_{3}(x, t)$ of mq-HAM $(n=1), U_{5}(x, t)$ of mq-HAM $(n=1)$, and $U_{7}(x, t)$ of mq-HAM $(n=1)$ of Equation (43) at $h=-1, x=4$ and $-15 \leq t \leq 2$

Figure 35: The comparison between the absolute error of $U_{5}(x, t)$ of q-HAM $(n=20), U_{3}(x, t)$ of mq-HAM $(n=20), U_{5}(x, t)$ of mq-HAM $(n=20)$, and $U_{7}(x, t)$ of mq-HAM ($n=20$) of Equation (43) at $h=-18.3, x=4$ and $-15 \leq t \leq 2$

Figure 36: The comparison between the absolute error of $U_{5}(x, t)$ of q-HAM $(n=100), U_{3}(x, t)$ of mq-HAM $(n=100)$, $U_{5}(x, t)$ of mq-HAM ($n=100$), and $U_{7}(x, t)$ of mq-HAM $(n=100)$ of Equation (43) at $h=-86, x=4$ and $-15 \leq t \leq 2$

CONCLUSION

A mq-HAM was proposed. This method provides an approximate solution by rewriting the nth-order non-linear differential equation in the form of n first-order differential equations. The solution of these n differential equations is obtained as a power series solution. It was shown from the illustrative examples that the mq-HAM improves the performance of q-HAM and nHAM.

REFERENCES

1. Liao SJ. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems, Ph.D. Thesis. China: Shanghai Jiao Tong University; 1992.
2. Abbasbandy S. The application of homotopy analysis method to nonlinear equations arisingin heat transfer. Phys Lett A 2006;360:109-13.
3. Abbasbandy S. The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation. Phys Lett A 2007;361:478-83.
4. Bataineh S, Noorani MS, Hashim I. Solutions of time-dependent emde-fowler type equations by homotopy analysis method. Phys Lett A 2007;371:72-82.
5. Bataineh S, Noorani MS, Hashim I. The homotopy analysis method for Cauchy reaction-diffusion problems. Phys Lett A 2008;372:613-8.
6. Bataineh S, Noorani MS, Hashim I. Approximate analytical solutions of systems of PDEs by homotopy analysis method. Comput Math Appl 2008;55:2913-23.
7. Hassan HN, El-Tawil MA. A new technique of using homotopy analysis method for solving high-order nonlinear differential equations. Math Methods Appl Sci 2010;34:728-42.
8. Hassan HN, El-Tawil MA. A new technique of using homotopy analysis method for second order nonlinear differential equations. Appl Math Comput 2012;219:708-28.
9. Saberi-Nik H, Golchaman M. The Homotopy Analysis Method for Solvingdiscontinued Problems Arising in Nanotechnology. Italy: World Academy of Science, Engineering and Technology; 2011. p. 76.
10. Hayat T, Khan M. Homotopy solutions for a generalized second-grade fluid past a porous plate. Nonlinear Dynam 2005;42:395-405.
11. Huseen SN, Mkharrib HA. On a new modification of homotopy analysis method for solving nonlinear nonhomogeneous differential equations. Asian J Fuzzy Appl Math 2018;6:12-35.
12. El-Tawil MA, Huseen SN. The q-homotopy analysis method (q-HAM). Int J Appl Math Mech 2012;8:51-75.
13. El-Tawil MA, Huseen SN. On convergence of the q-homotopy analysis method. Int J Contemp Math Sci 2013;8:481-97.
14. Huseen SN, Grace SR, El-Tawil MA. The optimal q-homotopy analysis method (Oq-HAM). Int J Comput Technol 2013;11:2859-66.
15. Huseen SN. Solving the $\mathrm{K}(2,2)$ equation by means of the q-homotopy analysis method (q-HAM). Int J Innov Sci Eng Technol 2015;2:805-17.
16. Huseen SN. Application of optimal q-homotopy analysis method to second order initial and boundary value problems. Int J Sci Innov Math Res 2015;3:18-24.
17. Huseen SN. Series solutions of fractional initial-value problems by q-homotopy analysis method. Int J Innov Sci Eng Technol 2016;3:27-41.
18. Huseen SN. A numerical study of one-dimensional hyperbolic telegraph equation. J Math Syst Sci 2017;7:62-72.
19. Huseen SN, Ayay NM. A new technique of the q-homotopy analysis method for solving non-linear initial value problems. J Prog Res Math 2018;14:2292-307.
20. Huseen SN, Shlaka RA. The regularization q-homotopy analysis method for (1 and 2)-dimensional non-linear first kind Fredholm integral equations. J Prog Res Math 2019;15:2721-43.
21. Akinyemi L. q-homotopy analysis method for solving the seventh-order time-fractional Lax's Korteweg-deVries and Sawada-Kotera equations. Comp Appl Math 2019;38:191.
22. Akinyemi L, Huseen SN. A powerful approach to study the new modified coupled Korteweg-de Vries system. Math Comput Simul 2020;177:556-67.
23. Huseen SN, Grace SR. Approximate solutions of nonlinear partial differential equations by modified q homotopy analysis method. J Appl Math 2013;2013:9.
