Asian Journal of Mathematical Sciences

RESEARCH ARTICLE

On The Inverse Function Theorem and its Generalization in the Unitary Space

Chigozie Emmanuel Eziokwu
Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria

Received: 25-04-2020; Revised: 25-05-2020; Accepted: 10-07-2020

ABSTRACT

It is obvious that the inverse function theorem holds in the Banach space for R. In my paper on the generalized inverse function theorem, it was observed that the inverse function theorem also holds for R^{n}. However, in this paper, I attempted to establish that it holds in the unitary space and consequently can be extended to C^{n}; the generalized unitary space.

Key words: Norm space, continuity, differentiability, inverse function theorem

THE INVERSE FUNCTION THEOREM IN R

A function F could fail to be one to one but may be so on a subset S of D_{F} and by this we mean that $F\left(X_{1}\right)$ and $F\left(X_{2}\right)$ are distinct, whenever X_{1} and X_{2} are distinct points of S. Hence, F is not invertible but when F_{S} is defined on S by $F_{s}(X)=F(X), X \in S$, and left undefined for $X \notin S$ then F_{s} is invertible. We say that F_{s} is the restriction of F to S and that F_{s}^{-1} is the inverse of F restricted to S. The domain of F_{s}^{-1} is $F(S)$. If F is one to one on a neighborhood of X_{0}, we say that F is locally invertible on X_{0} and if this true for every X_{0} in a set S, we say that F is locally invertible on S.

Definition 1.1: [Riez [8]], [Williams[10]] A function $F: R^{n} \rightarrow R^{n}$ is regular on an open set S if F is one to one and continuously differentiable on S and $J F(X) \neq 0$, if $X \in S$. Also we may say that F is regular on an arbitrary set S if F is regular on an open set containing S.
Theorem 1.1: [Athanassius[1]], [Erwin[6]] Suppose that $F: R^{n} \rightarrow R^{n}$ is regular on an open set S, and let $G=F_{s}^{-1}$ then $F(S)$ is open, G is continuously

Address for correspondence:

Chigozie Emmanuel Eziokwu
E-mail: okereemm@yahoo.com
differentiable on $F(S)$ and $G^{\prime}(U)=F^{\prime}(X)^{-1}$, where $U=F(X)$.
Moreover, since G is one to one on $F(S), G$ is regular on $F(S)$.
Definition 1.2: If F is regular on an open set S, we say that F_{s}^{-1} is a branch of F^{-1}. Hence, it is possible to better define a branch of F^{-1} on a set $T \subset R(F)$ if and only if $T=F(S)$ where F is regular on S. Note that any subset of $R(F)$ that does not have this property cannot have a branch of F^{-1} defined on them.
Theorem 1.2 (the inverse function theorem) [Athanassius[1]], [Erwin[6]]: Let $F: R^{n} \rightarrow R^{n}$ be continuously differentiable on an open set S and suppose that $J F(X) \neq 0$ on S. Then, if $X_{0} \in S$, there is an open neighborhood N of X_{0} on which F is regular. Moreover, $F(N)$ is open and $G=F_{N}{ }^{-1}$ is continuously differentiable on $F(N)$ with $\quad G^{\prime}(U)=\left[F^{\prime}(X)\right]^{-1} \quad$ (where $U=F(X), U \in F(N)$.
Corollary 1.3: If F is continuously differentiable on a neighborhood of X_{0} and $J F\left(X_{0}\right) \neq 0$, then there is an open neighborhood N of X_{0} on which the conclusion of theorem 1.2 holds.

THE INVERSE FUNCTION THEOREM ON THE UNITARY SPACE

Here, we discuss the inverse function theorem in a plane other than the reals and in precise the
unitary space C^{n}. As preliminary in this section, we introduce the following concepts.

Local invertibility

A complex function F is one to one only on a subset S of D_{F} where D_{F} is complex points. This in general may fail but that the assertion holds means that $F\left(Z_{1}\right)$ and $F\left(Z_{2}\right)$ are distinct, whenever Z_{1} and Z_{2} are distinct points of S so that F is not invertible except if F_{s} is defined on S by $F_{s}(Z)=F(Z), Z \in S$,

Then, F_{s} is invertible. On the other hand, F_{s} is the restriction of F to S and F_{s}^{-1} is the inverse of F restricted to S and the domain of F_{s}^{-1} is $F(S)$. If F is one to one on a neighborhood of Z_{0}, we say that F is locally invertible at Z_{0}. If this is true for every Z_{0} in a set S, then F is locally invertible on S.

Regular invertible functions

Definition 2.2.1: A complex function $F: C^{n} \rightarrow C^{n}$ is regular on an open set S and let $G=F_{s}^{-1}$. Then, $F(S)$ is open, G is continuously differentiable on $F(S)$ and $G(U)=(F(z))^{-1}$, where $U=F(Z)$. Moreover, since G is one to one on $F(S), G$ is regular on $F(S)$.
Definition 2.2.2: We say that F_{s}^{-1} is a branch of F^{-1} if F is regular on an open set S. More so, this definition implies that F_{s}^{-1} is a branch of F^{-1} on a set $T \subset C(F)$ if and only if $T=F(S)$, where F is regular on S. Note that any open subset of $C(F)$ that does not have this property cannot be said to have a branch defined on it.
Theorem 2.2 (the inverse function theorem): Let $F: C^{n} \rightarrow C^{n}$ be continuously differentiable on an open set S and suppose that $J F(Z) \neq 0$ on S. Then, if $Z_{0} \in S$, then there is an open neighborhood N of Z_{0} on which F is regular. More so, $F(N)$ is open and $G=F_{N}{ }^{-1}$ is continuously differentiable on $F(N)$, with $G^{\prime}(N)=\left[F^{\prime}(z)\right]^{-1}$ (where $U=F(Z)), U \in F(N)$.
Corollary 2.2.3: If F is continuously differentiable on a neighborhood of Z_{0} and $J F\left(Z_{0}\right) \neq 0$, then
there is an open neighborhood N of Z_{0} on which the conclusion of theorem 2.2 holds.

GENERALIZED INVERSE FUNCTION THEOREM IN THE UNITARY SPACE

Generalized local invertibility

A set of complex functions F_{i} are/is one to one only on a subset S of $D_{F_{i}}$ where $D_{F_{i}}$ is complex points. This in general may fail but that the assertion holds mean that $F_{i}\left(z_{1}\right)$ and $F_{i}\left(z_{2}\right)$ are distinct points of S so that $F_{i}^{\prime} s$ is not invertible except $F_{i_{s}}$ is defined on S by $F_{i_{s}}\left(z_{i}\right)=F_{i}\left(z_{i}\right)$, $z_{i} \in S$ and left undefined for $z_{i} \in S$ and then $F_{i_{s}}$ is invertible.
On the other hand, $F_{i_{s}}$ is restrictions of F_{i} to S and $F_{i_{s}}{ }^{-1}$ is the inverses of $F_{i}^{\prime} s$ restricted to S and the domain of $F_{i_{s}}{ }^{-1}$ is $F(S)$. If $F_{i}^{\prime} s$ is one to one z_{0} neighborhoods, we say that $F_{i}^{\prime} s$ is locally invertible each at z_{0}. If this is true for every z_{0} in a set S, then $F_{i}^{\prime} s$ is locally invertible on S.

Generalized regular invertible functions

Definition 3.2.1: Complex functions $F_{i}: C^{n} \rightarrow C^{n}$ are each regular on an open set S and $J_{i} F_{i}\left(z_{i}\right) \neq 0$ if $z_{i} \in S$. We also say that F_{i}^{s} is each regular on an arbitrary set S if $F_{-} i^{\wedge}\{ \} s$ is regular on an open set containing S.
Theorem 3.2.1. Suppose that $F_{i}: C^{n} \rightarrow C^{n}$ are regular on an open set S and if $G_{i}=F_{i_{s}}{ }^{-1}$, then $F_{i}(S)$ is open and $G_{i}^{\prime} s$ is continuously differentiable on $F_{i}(S)$ while $G_{i}(U)=\left(F_{i}\left(z_{i}\right)\right)^{-1}$, where $U_{i}=F_{i}\left(z_{i}\right)$. Moreover, since $G_{i}^{\prime} s$ is one to one on $F_{i}(S), G_{i}^{\prime} s$ irregular on $F_{i}(S)$.

Definition 3.2: We say that $F_{i_{s}}^{-1}$ is branches of F_{i}^{-1} if F_{i} is regular on an open set S. More so, this definition implies that $F_{i}^{\prime} s$ is branches of F_{i}^{-1} on a $T_{i} \subset R\left(F_{i}\right)$ if and only if $T_{i}=F_{i}(S)$, where $F_{i}^{\prime} s$ is regular on S. Note that any open subsets of $R\left(F_{i}\right)$ that do not have this property cannot be said to have branches defined on them.

MAIN RESULTS

Theorem 3.2 [the generalized inverse function theorem in the unitary space]

Let $F_{i}: C^{n} \rightarrow C^{n}$ be a set of continuously differentiable functions on an open set S. Suppose that each $J_{i} F_{i}\left(z_{i}\right) \neq 0$ on S. Then, if $z_{i} \in S$, there are open neighborhoods N_{i} of z_{i} on which $F_{i}^{\prime} s$ is regular. More so, $F_{i}\left(N_{i}\right)$ is each open with
$F(N)=\bigcup_{j=1}^{n}\left\{F_{i}\left(N_{i}\right)\right\}$
and
$G=\bigcup_{i=1}^{n}\left\{G_{i}\right\}=\bigcup_{i=1}^{n}\left\{F_{i_{N_{i}}}\right\}=F_{N}{ }^{-1}$
Continuously differentiable on $\bigcup_{i=1}^{n}\left\{F_{i}\left(N_{i}\right)\right\}$ such that $G^{\prime}(N)=\bigcup_{i=1}^{n}\left\{G_{i}\left(N_{i}\right)\right\}=\left[\bigcup_{i=1}^{n}\left\{F_{i}\left(z_{i}\right)\right\}\right]^{-1}$.
where $\bigcup_{i=1}^{n} U_{i}=\bigcup_{i=1}^{n} F_{i}\left(z_{i}\right), \bigcup_{i=1}^{n} U_{i} \in \bigcup_{i=1}^{n} F_{i}\left(N_{i}\right)$.
Proof: First, we show that if $X_{0} \in S$, then a neighborhood of $\bigcup_{i=1}^{n} F_{i}\left(X_{0}\right)$ is in $\bigcup_{i=1}^{n} F_{i}(S)$. This implies that $\bigcup_{i=1}^{n} F_{i}(S)$ is open.
Since S is open, there is a $\bigcup_{i=1}^{n} \rho_{i}>0$ such that $\bigcup_{i=1}^{n} B_{i_{\rho_{i}}}\left(X_{0}\right) \subset S$. Let $\bigcup_{i=1}^{n} B_{i}$ be the boundary of $\bigcup_{i=1}^{n} B_{i_{i_{i}}}\left(X_{0}\right)$, thus
$B=\bigcup_{i=1}^{n} B_{i}=\bigcup_{i=1}^{n}\left\{X_{i}\right\} \bigcup_{i=1}^{n} X_{i}-X_{0}=\bigcup_{i=1}^{n} p_{i}=p$
The functions
$\sigma=\bigcup_{i=1}^{n} \sigma_{i}\left(X_{i}\right)=\bigcup_{i=1}^{n} F_{i}\left(X_{i}\right)-F_{i}\left(X_{0}\right)$
are continuous on S and therefore on $\bigcup_{i=1}^{n} B_{i}$ which is compact. Hence, there is a point $\bigcup_{i=1}^{n} X_{i}$ in $\bigcup_{i=1}^{n} B_{i}$ where $\bigcup_{i=1}^{n} \sigma_{i}\left(X_{i}\right)$ attain its minimum value say, $\bigcup_{i=1}^{n} m_{i}$ on $\bigcup_{i=1}^{n} B_{i}$ Moreover, $\bigcup_{i=1}^{n} m_{i}>0$
since $\bigcup_{i=1}^{n} Z_{i} \neq 0$ each $\bigcup_{i=1}^{n} F_{i}$ is one to one on S.
Therefore, $\bigcup_{i=1}^{n} F\left(Z_{i}\right)-F\left(Z_{0}\right) \geq \bigcup_{i=1}^{n} m_{i}>0$ if
$\bigcup_{i=1}^{n} Z_{i}-Z_{0}=\bigcup_{i=1}^{n} \rho_{i}$
The set
$\left\{U_{i} U_{i}-F_{i}\left(Z_{0}\right) \leq \bigcup_{i=1}^{n} \frac{m_{i}}{2}\right\}$
is a neighborhood of $\bigcup_{i=1}^{n} F_{i}\left(Z_{0}\right)$.
We will show that it is a subset of $\bigcup_{i=1}^{n} F_{i}(S)$. To see this, let $\bigcup_{i=1}^{n} U_{i}$ be a set of fixed points in this set. Thus,
$\bigcup_{i=1}^{n} U_{i}-F_{i}\left(Z_{i}\right)<\bigcup_{i=1}^{n} \frac{m_{i}}{2}$
Consider the function
$\bigcup_{i=1}^{n} \sigma_{i}\left(Z_{i}\right)=\bigcup_{i=1}^{n} U_{i}-F_{i}\left(Z_{i}\right)^{2}$
which is continuous on S. Note that $\bigcup_{i=1}^{n} \sigma_{i} \geq \bigcup_{i=1}^{n} \frac{m_{i}}{4}$ if
$\bigcup_{i=1}^{n} Z_{i}-Z_{0}=\bigcup_{i=1}^{n} \rho_{i}$
Since if $\bigcup_{i=1}^{n} Z_{i}-Z_{0}=\bigcup_{i=1}^{n} \rho_{i}$, then
$\bigcup_{i=1}^{n} U_{i}-F_{i}\left(Z_{i}\right)=\bigcup_{i=1}^{n}\left(U_{i}-F_{i}\left(Z_{0}\right)\right)+\binom{F_{i}\left(Z_{0}\right)}{-F_{i}\left(Z_{i}\right)}$
$\geq \bigcup_{i=1}^{n} F_{i}\left(X_{0}\right)-F_{i}\left(X_{i}\right)-\bigcup_{i=1}^{n} U_{i}-F_{i}\left(X_{0}\right) \geq$
$\bigcup_{i=1}^{n}\left(m_{i}-\frac{m_{i}}{2}\right)=\bigcup_{i=1}^{n} \frac{m_{i}}{2}$
that is, from Equations (3.2) and (3.3).
Since $\bigcup_{i=1}^{n} \sigma_{i}$ is continuous on $S, \bigcup_{i=1}^{n} \sigma_{i}$ attains a minimum value μ on the compact set $\overline{B_{\rho}\left(Z_{0}\right)}$ that is there are \bar{Z}_{i} in $\overline{B_{\rho}\left(Z_{0}\right)}$ such that
$\bigcup_{i=1}^{n} \sigma_{i}\left(Z_{i}\right) \geq \bigcup_{i=1}^{n} \sigma_{i}\left(\overline{Z_{i}}\right)=\mu, \bigcup_{i=1}^{n} Z_{i} \in \overline{B_{\rho}\left(Z_{0}\right)}$

Setting
$\bigcup_{i=1}^{n} Z_{i}=Z_{0}$,
We conclude from Equation (3.3) that
$\bigcup_{i=1}^{n} \sigma_{i}(\bar{Z})=\mu \leq \bigcup_{i=1}^{n} \sigma_{i}\left(Z_{0}\right)<\bigcup_{i=1}^{n} \frac{m_{i}}{4}$
Because of Equations (3.1) and (3.4), this rules out the possibility that $\bigcup_{i=1}^{n} Z_{i} \in B$, so $\bigcup_{i=1}^{n} \overline{Z_{i}} \in B_{\rho}\left(Z_{0}\right)$.
Now, we want to show that $\mu=0$; that is
$\bigcup_{i=1}^{n} U_{i}=\bigcup_{i=1}^{n} F_{i}\left(\overline{Z_{i}}\right)$
To this end, we note that $\bigcup_{i=1}^{n} \sigma_{i}\left(Z_{i}\right)$ can be written
as as
$\bigcup_{i=1}^{n} \sigma_{i}\left(Z_{i}\right)=\sum_{i=1}^{n}\left(U_{i, j}-f_{i, j}\left(Z_{i}\right)\right)^{2}$
So $\bigcup_{i=1}^{n} \sigma_{i}$ is differentiable on $B_{\rho}\left(Z_{0}\right)$. Therefore, the first partial derivatives of $\bigcup_{i=1}^{n} \sigma_{i}$ are all zero at the local minimum point $\bigcup_{i=1}^{n} \overline{Z_{i}}$, so
$\sum_{i=1}^{n} \frac{\partial f_{i . j}(\bar{Z})}{\partial x_{i, j}}\left(U_{i, j}-f_{i, j}(\bar{Z})\right)=0$ for $1 \leq i \leq n$
or in matrix form
$\bigcup_{i=1}^{n} F_{i}^{\prime}\left(\overline{Z_{i}}\right)\left(U_{i}-F_{i}\left(\overline{Z_{i}}\right)\right)=0$
Since $\bigcup_{i=1}^{n} F_{i}^{\prime}\left(Z_{i}\right)$ is non-singular, this implies that
$\bigcup_{i=1}^{n} U_{i}=\bigcup_{i=1}^{n} F_{i}\left(\overline{Z_{i}}\right)$
Thus, we have shown that every U that satisfies (3.3) is in $\bigcup_{i=1}^{n} F_{i}(S)$ is open.

Next, we show that $\bigcup_{i=1}^{n} G_{i}$ is continuous on $\bigcup_{i=1}^{n} F_{i}(S)$ and Z_{0} is the unique point in S such that $\bigcup_{i=1}^{n} F_{i}\left(Z_{0}\right)=U_{0}$. Since $\bigcup_{i=1}^{n} F_{i}^{\prime}\left(Z_{0}\right)$ is invertible, there exists $\lambda_{i}>0$ and an open neighborhood
$\bigcup_{i=1}^{n} N$ of Z_{0} such that $\bigcup_{i=1}^{n} N \subset S$ and
$\bigcup_{i=1}^{n} F_{i}\left(Z_{i}\right)-F_{i}\left(Z_{0}\right) \geq \bigcup_{i=1}^{n} \lambda_{i} Z_{i}-Z_{0}$ if $\bigcup_{i=1}^{n} Z_{i} \in \bigcup_{i=1}^{n} N_{i}$

Since $\bigcup_{i=1}^{n} F_{i}$ satisfies the hypothesis of the present theorem on $\bigcup_{i=1}^{n} N_{i}$, the first part of this proof shows that $\bigcup_{i=1}^{n} F_{i}\left(N_{i}\right)$ is an open set containing $U_{i}=\bigcup_{i=1}^{n} F_{i}\left(Z_{0}\right)$. Therefore, there is a $\delta>0$ such that $\bigcup_{i=1}^{n} Z_{i}=\bigcup_{i=1}^{n} G_{i}\left(U_{i}\right)$ is in $\bigcup_{i=1}^{n} N_{i}$ if $\bigcup_{i=1}^{n} U_{i} \in B_{\delta}\left(U_{0}\right)$. Setting $\bigcup_{i=1}^{n} Z_{i}=\bigcup_{i=1}^{n} G_{i}\left(U_{i}\right)$ and $Z_{0}=\bigcup_{i=1}^{n} G_{i}\left(U_{0}\right)$ in Equation (3.5), yields

$$
\bigcup_{i=1}^{n} F_{i}\left(G_{i}\left(U_{i}\right)\right)-F_{i}\left(G_{i}\left(U_{0}\right)\right) \geq \bigcup_{i=1}^{n}-G_{i}\left(U_{0}\right)
$$

$$
\text { if } \bigcup_{i=1}^{n} U_{i} \in B_{\delta}\left(U_{0}\right)
$$

Since $\bigcup_{i=1}^{n}\left[F_{i}\left(G_{i}\left(U_{i}\right)\right)\right]=\bigcup_{i=1}^{n} U_{i}$, this can be written
as $\bigcup_{i=1}^{n} G_{i}\left(U_{i}\right)-G_{i}\left(U_{0}\right) \leq \bigcup_{i=1}^{n} \frac{1}{\lambda} U_{i}-U_{0}$
If
$\bigcup_{i=1}^{n} U_{i} \in B_{\delta}\left(U_{0}\right)$
which means that $\bigcup_{i=1}^{n} G_{i}$ is continuous at U_{0}. Since U_{0} is an arbitrary point in $\bigcup_{i=1}^{n} F_{i}(S)$, it follows that $\bigcup_{i=1}^{n} G_{i}$ is continuous on $\bigcup_{i=1}^{n} F(S)$. We will now show that $\bigcup_{i=1}^{n} G_{i}$ is different at U_{0}. Since
$\bigcup_{i=1}^{n}\left[G_{i}\left(F_{i}\left(Z_{i}\right)\right)\right]=\bigcup_{i=1}^{n} Z_{i}, Z_{i} \in S$
The chain rule implies that if $\bigcup_{i=1}^{n} G_{i}$ is differentiable at U_{0}, then
$\bigcup_{i=1}^{n} G_{i}^{\prime}\left(U_{0}\right) F_{i}^{\prime}\left(Z_{0}\right)=I$
Therefore, if $\bigcup_{i=1}^{n} G_{i}$ is differentiable at U_{0}, the differentiable matrix of $\bigcup_{i=1}^{n} G_{i}$ must be
$\bigcup_{i=1}^{n} G_{i}^{\prime}\left(U_{0}\right)=\bigcup_{i=1}^{n}\left[F_{i}\left(X_{0}\right)\right]^{-1}$
So to show that $\bigcup_{i=1}^{n} G_{i}$ is differentiable at U_{0}, we must show that if
$\bigcup_{i=1}^{n} H_{i}\left(U_{i}\right)$
$=\frac{\bigcup_{i=1}^{n}-\bigcup_{i=1}^{n} G_{i}\left(U_{o}\right)-\bigcup_{i=1}^{n}\left[F_{i}\left(Z_{0}\right)\right]^{-1} \bigcup_{i=1}^{n}\left(U_{i}-U_{0}\right)}{\bigcup_{i=1}^{n}\left[U_{i}-U_{0}\right]}$
For
$\bigcup_{i=1}^{n} U_{i} \neq U_{0}$
Then,
$\lim _{U_{i} \rightarrow U_{0}} \bigcup_{i=1}^{n} H_{i}\left(U_{i}\right)=0$
Since $\bigcup_{i=1}^{n} F_{i}$ is one to one on S and $\bigcup_{i=1}^{n} F_{i}^{\prime}\left(G_{i}\left(U_{i}\right)\right)=\bigcup_{i=1}^{n} U_{i}$, it follows that $\bigcup_{i=1}^{n} U_{i} \neq U_{0}$, then $\bigcup_{i=1}^{n} G_{i}\left(U_{i}\right) \neq \bigcup_{i=1}^{n} G_{i}\left(U_{0}\right)$. Therefore, we can multiply the numerator and denominator of Equation (3.7) by $\bigcup_{i=1}^{n} G_{i}\left(U_{i}\right)-G_{i}\left(U_{0}\right)$ to obtain
$\bigcup_{i=1}^{n} H_{i}\left(U_{i}\right)=\frac{\bigcup_{i=1}^{n}\left|G_{i}\left(U_{i}\right)-G_{i}\left(U_{o}\right)\right|}{\bigcup_{i=1}^{n}\left|U_{i}-U_{0}\right|}$
$\left(\frac{\bigcup_{i=1}^{n} G_{i}\left(U_{i}\right)-\bigcup_{i=1}^{n} G_{i}\left(U_{0}\right)-\bigcup_{i=1}^{n} \bigcup_{U=1}^{n}\left(U_{i}-U_{0}\right)}{\left.\left.\bigcup_{i=1}^{n} \mid G_{i}\left(G_{i}\right)\right]_{i}\right)-G_{i}\left(U_{o}\right) \mid}\right)$
$=\frac{\bigcup_{i=1}^{n}\left|G_{i}\left(U_{i}\right)-G_{i}\left(U_{o}\right)\right|}{\bigcup_{i=1}^{n}\left|U_{i}-U_{0}\right|}\left[F_{i}\left(Z_{0}\right)\right]^{-1}$
$\left(\frac{\bigcup_{i=1}^{n}\left(U_{i}-U_{0}\right)-F_{i}^{\prime}\left(Z_{0}\right)\left(G_{i}\left(U_{i}\right)\right)-\bigcup_{i=1}^{n} G_{i}\left(U_{0}\right)}{\bigcup_{i=1}^{n}\left|G_{i}\left(U_{i}\right)-G_{i}\left(U_{o}\right)\right|}\right)$
If $0<\bigcup_{i=1}^{n}\left|U_{i}-U_{0}\right|<\delta$. Because of Equation (3.6), this implies

If
$\bigcup_{i=1}^{n}\left|U_{i}-U_{0}\right|<\delta$
Now let
$\bigcup_{i=1}^{n} H_{i, j}\left(U_{i}\right)=\frac{\bigcup_{i=1}^{n}\left(U_{i}-U_{0}\right)-\bigcup_{i=1}^{n}\left(F_{i}^{\prime}\left(X_{0}\right)\right.}{\left.\left.\bigcup_{i=1}^{n} \mid U_{i}\right)-G_{i}\left(U_{0}\right)\right)}$
To complete the proof of Equation (3.8), we must show that $\lim _{U_{i} \rightarrow U_{0}} H_{i, j}\left(U_{i}\right)=0$. Since $\bigcup_{i=1}^{n} F_{i}$ is differentiable at Z_{0} we know that if

$$
\begin{align*}
& \bigcup_{i=1}^{n} H_{i, k}\left(Z_{i}\right)==_{Z_{i} \rightarrow Z_{0}}^{\lim } \bigcup_{i=1}^{n} H_{i, j}\left(U_{i}\right) \\
& =\frac{\bigcup_{i=1}^{n}\left(F_{i}\left(Z_{i}\right)\right)-\bigcup_{i=1}^{n}-\bigcup_{i=1}^{n} F_{i}^{\prime}\left(Z_{0}\right)\left(Z-Z_{0}\right)}{\bigcup_{i=1}^{n}\left|Z-Z_{0}\right|} \tag{3.9}
\end{align*}
$$

Then,
$\lim _{Z_{i} \rightarrow Z_{0}} H_{i, k}\left(Z_{i}\right)=0$
Since $\bigcup_{i=1}^{n} F_{i}\left(G_{i}\left(U_{i}\right)=\bigcup_{i=1}^{n} U_{i}\right.$ and
$Z_{0}=\bigcup_{i=1}^{n} G_{i}\left(U_{0}\right)$
$\bigcup_{i=1}^{n}\left(H_{i, j}\left(U_{i}\right)\right)=\bigcup_{i=1}^{n}\left(H_{i, k}\left(G_{i}\left(U_{i}\right)\right)\right)$
Now, suppose for $\varepsilon>0, \exists \delta_{j}>0 \bigcup_{i=1}^{n}\left|H_{i, k}\left(Z_{i}\right)\right|<\varepsilon$,
if $0<\bigcup_{i=1}^{n}\left|Z_{i}-X_{0}\right|=\bigcup_{i=1}^{n}\left|Z_{i}-G_{i}\left(U_{0}\right)\right|<\delta_{j}$
Since $\bigcup_{i=1}^{n} G_{i}$ is continuous at U_{0}, there is a $\delta_{i, k} \in(0, \delta)$ such that
$\bigcup_{i=1}^{n}\left|G_{i}\left(U_{i}\right)-G_{i}\left(U_{0}\right)\right|<\delta_{j}$
if
$0<\bigcup_{i=1}^{n}\left|U_{i}-U_{0}\right|<\delta_{i, k}$
This and Equation (3.11) imply that
$\bigcup_{i=1}^{n}\left|H_{i, k}\left(U_{i}\right)\right|=\bigcup_{i=1}^{n}\left|H_{i, k} G_{i}\left(U_{i}\right)\right|<\varepsilon$
If $0<\bigcup_{i=1}^{n}| | U_{i}-U_{0} \mid<\delta_{i, k}$
Since this implies (3.9), $\bigcup_{i=1}^{n} G_{i}$ is differentiable at
X_{0}. Since U_{0} is an arbitrary member of $\bigcup_{i=1}^{n} F_{i}\left(N_{i}\right)$, we can now drop the zero subscript and conclude that $\bigcup_{i=1}^{n} G_{i}$ is continuous and differentiable on $\bigcup_{i=1}^{n} F_{i}\left(N_{i}\right)$, and $\bigcup_{i=1}^{n}\left[G_{i}^{\prime}\left(U_{i}\right)\right]=\bigcup_{i=1}^{n}\left[F_{i}^{\prime}\left(Z_{i}\right)\right]^{-1}, \bigcup_{i=1}^{n} U_{i} \in \bigcup_{i=1}^{n} F_{i}\left(N_{i}\right)$
Hence,
$G^{\prime}(N)=\bigcup_{i=1}^{n} G_{i}\left(N_{i}\right)=\left[\bigcup_{i=1}^{n}\left\{F_{i}\left(Z_{i}\right)\right\}\right]^{-1}$

Where
$\bigcup_{i=1}^{n} U_{i}=\bigcup_{i=1}^{n} F_{i}\left(Z_{i}\right), \bigcup_{i=1}^{n} U_{i} \in \bigcup_{i=1}^{n} F_{i}\left(N_{i}\right)$
and hence the proof
Corollary 3.3: If $\bigcup_{i=1}^{n} F_{i}$ is continuously differentiable on a neighborhood of Z_{0} and $\bigcup_{i=1}^{n} J_{i} F_{i}\left(Z_{0}\right) \neq 0$, then, there is an open neighborhood $\bigcup_{i=1}^{n} N_{i}$ of Z_{0} on which the conclusion of the main result holds.

REFERENCES

1. Kartzatos AG. Advanced Ordinary Differential Equations. Tampe, Florida: Marina Publishing Company Inc.; 1973.
2. Arthanasuis K . On the review of the inverse function theorem in application to some abstract elements of the ordinary. Diffrential Equ 1972;10:33-41.
3. Barton M. On an abstract on the inverse function theorem. J Mathe Anal 1998;8:5-6.
4. Chidume CE. Functional Analysis an Introduction to Metric Spaces. Nigeria: Longman; 1989.
5. Chidume CE. Applicable Functional Analysis Fundamental Theorems with Appli-cations. Trieste, Italy: ICTP; 1996.
6. Moore C. Lecture Notes On Modern Algebra. Awka, Anambra State Nigeria: Nnamdi Azikiwe University; 2000.
7. Zill DG, Cullen MR. Differential Equations with Boundary Value Problems. $6^{\text {th }}$ ed. Australia: Thomson Books/Cole; 2012.
8. Kreyzig E. Introductory Functional Analysis with Applications. New York: John Wiley and Sons; 1978.
9. Braver F, Nohel JA. Ordinary Differential Equations. New York: W.A Benjamin Inc.; 1967.
10. Reeve JP. Non-linear optimization in the Banach space. J Pure Appl Mathe 2005;9:20-8.
11. Frigyes R, Bela NS. Functional Analysis. New York: Dover Publications, Inc.; 1990.
12. Finney RL, Ostberg DR. Elementary Differential Equations with Linear Algebra. California: AddisonWesley Publishing Company; 1976.
13. Royden HL. On the frechet derivatives in the banach space and the applications indexed point theory. J Pure Appl Mathe 1992;4:18-34.
14. Trench WF. On the inverse function theorem in the nonlinear classical ordinary differential equations, a fixed point approach. J Mathe 2017;2:7-16.
15. William FT. Introduction to Real Analysis. San Antonio, IX, Nigeria, USA: National Mathematical Centre Abuja; 2012.
16. Wright S . On the classical inverse function theorem in the solution of some classical problems of mathematical physics. Pac J Mathe 1978;5:68-81.
