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ABSTRACT
In this paper, the reduced differential transform method (RDTM) will be applied to time-fractional order 
beam and beam-like equations. The RDTM produces an analytical approximate solution for the equation. 
An approximate analytical solution of the equation is calculated in the form of a series with few and easy 
computations. Three test problems are carried out to validate and illustrate the efficiency of the method. 
It is observed that the proposed technique is highly suitable for such problems.
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INTRODUCTION

Partial differential equations have numerous 
applications in various fields of science and 
engineering (Debtnath, 1997). Fractional calculus 
theory is a mathematical analysis tool to study the 
differentiation and integration to non-integer order 
(Oldham and Spanier, 1974). It is used in various 
fields of science and engineering. The fractional 
differential equations appear more and more 
frequently in different research areas and engineering 
applications (Podlubny, 1999; Miller and Ross, 1993). 
It is not always possible to find analytical solutions 
to these problems. In the literature, various analytical 
and numeric approaches have been developed for 
the solution partial differential equations. Since 
most fractional differential equations do not have 
exact analytic solutions, approximate and numerical 
techniques are used extensively.
The DTM is one of the numerical methods in solving 
differential equations. The concept of the DTM was 
first introduced by Zhou, 1986, and applied to solve 
initial value problems for electric circuit analysis. 
The method is based on Taylor’s series expansion 
and can be applied to solve both linear and non-linear 
differential equations. RDTM was first introduced by 

Keskin et al., 2009; 2010a; 2010b; 2010c and 2011. 
This method based on the use of the traditional DTM 
techniques. Since RDTM has been used by many 
authors to obtain approximate analytical solution 
and in some cases exact solutions to differential 
equations so the investigation of exact solutions of 
non-linear partial differential equations (NPDEs) 
plays an important role in the study of non-linear 
physical phenomena. The investigation of exact 
solutions of non-linear partial differential equations 
(NPDEs) plays an important role in the study of non-
linear physical phenomena. Many methods, exact, 
approximate, and purely numerical are available in 
literature (Sohail et al.; 2012a; 2012b; Cenesiz et al., 
2010) for the solution of NPDEs. In this paper, we 
applied the RDTM, which is the modified version of 
DTM, to obtain the approximate analytical solution 
for time-fractional order beam and beam-like equation 
with appropriate initial condition. The RDTM does 
not require any discretization or linearization and it 
reduces significantly the computational work.[1-10]

Finally, the rest of the paper is organized as follows: In 
Section 2, we will introduce some basic definitions, 
theorems, and preliminary concepts of fractional 
calculus. The details of the RDTM formulation 
for time-fractional beam equation are discussed in 
Section 3. In Section 3.2, we apply the RDTM to 
solve three test examples with their solutions to show 
its ability and efficiency. To the end, conclusion and 
discussion are given in Section 4.
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FRACTIONAL CALCULUS THEORY

There are several definitions of a fractional 
derivative of order α>0, in the literature due to 
Riemann-Liouville, Grunwald-Letnikov, Caputo, 
etc., (Hilfer, 2000, Miller et al., 1993; Oldham, 
1974; Podlubny, 1999). Here, we mention the 
essential definition of the fractional order integral 
and derivative in Riemann-Liouville and Caputo 
sense, respectively, which are used in this work.

Definition 2.1

Let λ∈R and n∈N. A real-valued function f:R+⟶R 
belongs to Cλ if there exists k∈R, k>λ and 
g∈C[0,∞) such that f(x)=xkg(x), for all x∈R+. 
Moreover, f n��  if f(n)∈Cλ.

Definition 2.2

The Riemann-Liouville fractional integral of f∈Cλ 
of order α≥0 is defined as

( )
( )

( ) 1

0

                                  0

1 ( ) ,    0  
( )

t
t

f t if
f t

t f d if
α

α

α

τ τ τ α
α

−

 =
= 

− >Γ
∫



Where, Γ denotes gamma function.

Definition 2.3

The fractional derivative of f∈Cλ of the order α≥0, 
in Caputo sense, is defined as
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Some properties of the operator 0

α can be found 
(He, 2000). For f∈Cλ, λ≥−1, α, γ≥0, β≥−1:
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One can see below cited references for further 
information on properties of fractional derivative 
and integral.

Lemma 2.1

Let n−1<α≤n, n∈N, and , 1nf λ λ∈ ≥ − , then
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ANALYSIS OF RDTM

In this section, some basic definitions and 
properties for RDTM are introduced as follows:

Definition 2.1

If u(x,t) is analytic and continuously differentiable 
with respect to the space variable x and time 
variable t in the domain of interest, then the 
t-dimensional spectrum function
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is the reduced transformed function of u(x,t), 
where α is a parameter which describes the order 
of time-fractional derivative. The inverse reduced 
differential transform of Uk(x) is given by
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Then, combining Eqns. (2.1) and (2.2), we get:
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When t0=0 Eqn. (2.3) reduces to
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Throughout the paper, we denote the original 
function by u(x,t).(lowercase) while it’s 
fractional reduced differential transform by 
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Uk(x) (uppercase).. From definitions, some basic 
properties of the Fractional reduced differential 
transform method are as follows:

Implementation of RDTM on time fractional 
beam equation

To explain how the RDTM works, we consider 
the general form of time-fractional order 
nonhomogeneous beam equation in the standard 
operator form

Lu(x,t)+Ru(x,t)=f(x,t)

subject to the initial conditions
u(x,0)=g(x)

Here ( , ) : ( , )tLu x t D u x tα=  is the fractional time 

derivative operator, 
4

4 ( , ) : ( , )Ru x t u x t
x
∂

=
∂

 is the 

linear operator and f(x,t) is the nonhomogeneous 
source term. According to the RDTM and Table 1, 
we can constructing the following iteration formulas
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Where R(Uk(x)) and Fk(x) are transformation of 
the functions Ru(x,t) and f(x,t), respectively, and 
from the initial condition, we write

   U0(x)=g(x) (3.2)

Substituting Eqn. (3.2) into Eqn. (3.1), we get the 
values of Uk(x) for all k=0,1,2,3,…. Then using the 
differential inverse reduced transform of Uk(x), 
gives n term approximate solutions as
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where n is the order of approximate solution. 
Therefore, the analytical approximate solutions 
are given by

u x t u x t
n n, lim ,
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��

Numerical applications

In this section, we used RDTM to construct 
analytic approximate solutions for time-fractional 
beam equations. For the accuracy and efficiency 
of the method, some illustrative examples are 
presented.

Example 1

Consider the time-fractional homogeneous beam 
equation,

  D u ut xxxx
� � � 0 (3.3)

Subject to initial condition
u(x,0)=sinx

Now applying the RDTM to Eqn. (3.3) and 
using Table 1, we obtain the following recursive 
relation,
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And from the initial condition, we obtain

   U0(x)=sinx (3.5)

Substituting Eqn. (3.5) into (3.4) and by 
straightforward iterative calculation, we get the 
following Uk(x) values successively
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Continuing with this procedure,
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k
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Then, using the differential inverse transformation 
(4.2), we have:

( ) ( ) ( ) ( )

( ) ( ) 2

1, sin sin
1

1 sin
2 1

u x t x x t

x t

α

α

α

α

= +
Γ +

+ +…
Γ +

which is desired solution.

Example 2

Consider the time fractional non-homogeneous 
beam equation,

  D u u xt xxxx
� � � 3 2  (3.6)

with initial condition

u(x,0)=ex

Now, applying the RDTM to Eqn. (3.6) 
and using Table 1, we obtain the following  
recursive relation,
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And from the initial condition, we obtain

   U0(x)=ex (3.9)

Substituting Eqn. (3.9) into (3.8), we get the 
following Uk(x) values successively
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Continuing with this procedure,
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Then, using the differential inverse transformation 
(4.2), we have:
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which is desired result.

Example 3

Consider the time fractional non-homogeneous 
beam-like equation,

  D u u ut x xxxx
� � � � 0 (3.10)

Subjected to initial condition

u(x,0)=ex

Now, applying the RDTM to Eqn. (3.10) 
and using Table 1, we obtain the following  
recursive relation,
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And the transformed of initial condition is

  U0(x)=ex (3.12)

Substituting Eqn. (3.12) into (3.11), we get the 
following Uk(x) values successively
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Continuing with this procedure,
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Then, using the differential inverse transformation 
(4.2), we have:
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which is an approximation solution.[11-15]

CONCLUSION

This paper is successfully implemented the 
RDTM to solve the initial value problem of time-
fractional beam and beam-like equations. The 
fractional derivative is taken into Caputo sense. 
The proposed solutions are obtained in the form of 
power series. The validity and efficiency of RDTM 
have been confirmed by three test problems. The 

method is applied in a direct way without any 
linearization or discretization. Hence, this method 
is a powerful and an efficient technique in finding 
the exact solutions for wide classes of problems, 
also the speed of the convergence is very fast.
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