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ABSTRACT
In this paper, we present review of integration in Banach spaces by means of definitions and theorems 
with special concentration on the Bochner integral. Brief touch was made on the generalized derivatives 
and generalized gradients (sub-differentials), and in the concluding part of this paper, we developed 
finite extensions of the Bochner integrals for sums and products as main results.
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INTRODUCTION

In this paper, we present some important definitions 
and properties of spaces compromising functions 
on a real interval [0,T] into a Banach space X. Such 
spaces and their properties are of vital importance 
for studying parabolic differential equations, 
modeling problems of plasticity, sandpile growth, 
superconductivity, and option pricing.

Integration in Banach Spaces

Definition 1.1.1:[1] Let (Ω, ℘, µ) be a finite 
measure space and X a Banach space, u: Ω→X 
is called strongly measurable if there exists a 
sequence {un} of simple functions such that ║un 
(w)−u (w) x║→0 for almost all u as n→α.

Definition 1.1.2 (Bochner Integral):[2] Let 
(Ω, ℘, µ) be a finite measure space and X a Banach 
space. Then, we define the Bochner integral of 
simple function u: Ω→X by

( )1
1


=

= ∩∑∫
n

i
iE

udu c E E

for any E ϵ℘, where c si
,  are fixed scales.

The Bochner integral of a strongly measurable 
function u: Ω→X is the strong limit (if it exists) 
of the Bochner integral of an approximating 
sequence {un} of simple functions. That is, 

lim
→∞=∫ ∫n n

E E

udu u du .

Remark 1.1.1

a. The Bochner integral is independent of the 
approximating sequence

b. If u is strongly measurable, u is Bochner 
integrable if and only if ║u (x)║is integrable

Definition 1.1.3:[3] Lp (0,T; X), 1 ≤ p < α consists 
of all strongly measurable function f: [0,T]→X for 
which

( )
0

< ∞∫
T

p

X
f t dt

Theorem 1.1.1:[4] Cm ([0,T], X) consisting of 
all continuous function f: [0,T]→X that have 
continuous derivatives up to order m on [0,T] is a 
Banach space with the norm

( ) ( )sup
0

0
≤ ≤

=
= ∑

m
k

t T Xk
f f t
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Theorem 1.1.2:[5] Lp (0,T; X) is a Banach space 
with the norm

( )
1

2

0

 
=   ∫

T
P

X
f f t dt

Let X be a Hilbert space, then L2 (0,T; X) is a 
Hilbert space with respect to inner product

( )2
0

, 0, ; ,= ∫
T

Xf gL T X f g dt

Remark 1.1.2.

a. In Lp (0,T; X), two functions are identically 
equal if they are equal except on a set of zero

b. Lα (0,T; X) denotes the space of all measurable 
function which are essentially bounded. It is 
Banach space with the norm

( )sup
0≤ ≤= t T X

f f t

c. If the embedding ⊆X Y  is continuous, then 
the embedding

( ) ( )0, : 0, ; , 1⊆ < ≤ ≤ ∞p qL T X L T Y q p

Is also continuous.
d. Let X* be a dual space of a Banach space X, 

then (Lp (0,T; X))* the dual of Lp (0,T; X) can 
be identified with Lp (0,T; X*) that is, we can 
write

L T X L T Xp p0 0, ; , ;
*

*( )( ) = ( )

Definition 1.1.4 (Generalized Derivative)[6]

Let f ϵ L1 (0,T; X) and g ϵ L1 (0,T; X) where X and 
Y are Banach spaces. The function is called the 
generalized derivatives of the function f on (0,T) if

 

( ) ( ) ( ) ( ) ( ) ( )

( )
0 0

0

1

0,

 

 ∞

= −

∀ ∈

∫ ∫
T T

nn t f t dt t g t dt

C T  (1.1)

we write g=f(n).

Remark 1.1.3
a) (Uniqueness of generalized derivative). The 

n-th generalized derivative is unique. That is, 
if h is another n-th generalized derivatives, 
then h=g almost everywhere on (0,T) that is 
h=g in L1 (0,T; X)

b) (Relationship between generalized derivatives 
and distributions). Let f ϵ L1 (0,T; X), then 
a distribution F is associated with f by the 
relation

( ) ( ) ( ) ( )0
0

0,   ∞= ∀ ∈∫
T

F t f t dt C T

For each n, this distribution has an nth derivative 
F(n) defined by

( ) ( ) ( ) ( )0, 1 , 0,   ∞= − ∀ ∈nn nF F C T

If (1.1) holds, then F(n) can be represented by

( ) ( ) ( ) ( ) ( )0
0

, 0,   ∞= ∀ ∈∫
T

n nF t f t dt C T

As we know, the advantage of the distribution 
concept is that each function f ϵ L1 (0,T; X) 
possesses derivatives of every order in the 
distributional sense. The generalized derivative 
(Definition 1.1.4) singles out the cases in which 
by the nth  distributional derivatives of f can be 
represented by a function g ϵ L1 (0,T; X). In this 
case, we set f(n) = g and write briefly

( ) ( ) ( )1 10, ; , 0, ;∈ ∈nf L T X f L T Y

Theorem 1.1.3 (Generalized Derivative and 
Weak Convergence)[7]

Let X and Y be Banach spaces and let the embedding 
⊆X Y  be continuous

Then it follows from f gk
n

k
( ) =  on (0,T) Ɐk, f 

fixed n ≥ 1 and fk→f in Lp (0,T; X) as k→α, gk→g 
in Lp (0,T; X) as k→α, 1 ≤ p,q ≤ α that f(n) = g on 
(0,T).
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Theorem 1.1.4[7]

For a Banach space X, let Hm,p (0,T; X) denote the 
space of all functions such that fm ϵ L1 (0,T; X), 
when n≤m and f(n) denote the nth  generalized 
derivative of f. Then Hm,p (0,T; X) is a Banach 
space with the norm

( )( )
( )

( )
( )

,

1

0
0, ; 0, ;0=

 = =  ∑m p
p

m P
n

H T X L T Xi
f f f f

If X is a Hilbert space and p = 2, then Hm,p (0,T; X) 
is a Hilbert space with the inner product

( ), 0, ;
0

, ,= ∫m p

T
i i

XH T X
f g f g dt

Remark 1.1.4

a. The proof of theorem (1.1.4) is similar to that 
of theorem which states that Hm (Ω) is Hilbert 
space with respect to the inner product

( )2, , 

 ≤
= Ω∑

m
F G D F D GL

More generally, if Hm,p (Ω) denotes the space of all 
functions f ϵ Lp (Ω) such that DαF ϵ Lp, 1 ≤ P < α, 
|α| ≤ m then the space is a Banach space.
b. For x < y

( ) ( ) ( )− ≤ ′∫
y

X X
x

f y f x f t dt

holds.

c. The embedding H T X C T H1 2
0 0

,
, ; , ,( ) ⊂ [ ]( )  

where H is a Hilbert space, is continuous, that 
is, there exists a constant k>0such that

[ ]( ) ( )1,20, , 0, ;≤C T H H T Hf f

GENERAL GRADIENT  
(SUB-DIFFERENTIAL)

Definition 2.1 (Lipschitz Continuity)[7]

Let Ω⊂ X T,  an operator from X into Y. We say 
that T is Lipschitz (with modulus α ≥0) on Ω, if 

T x T x x x
1 2 1 2( ) − ( ) ≤ −  for all x x

1 2
, ⊂ Ω. T is 

called Lipschitz near x (with modulus α) if, for 
some ɛ>0, T is Lipschitz with modulus on S (x). If 
T is Lipschitz near x ϵ Ω, we say that T is locally 
Lipschitz on Ω. α is called the Lipschitz exponent.

Definition 2.2 (Monotone Operators)[7]

Let T: X→X* this is called monotone if ˂Tu−Tv,u−
V˃ > 0 for all u,v ϵ X Note: 

( )  denoted the duality 
between X and X*, that is, also the value ˂ Tu−Tv,u−
V˃. In Hilbert space setting 

( )  becomes the inner 
product. T  is called strictly monotone if ˂Tu−

Tv,u−V˃ > 0 for all u, u,v ϵ X.

T is called strongly monotone if there is a constant 
k>0 such that ˂Tu−Tv,u−V˃ > k ║u−v║2 for all u,v 
ϵ X.

Definition 2.3[7]

Let T: H−2H* be a multi-valued operator into 
H*. The operator T is said to be monotone if (ξ−η, 
u−v)≥0 for all u,v ϵ H and for all ξ ϵ T (u) and 
η ϵ T. A monotone operator T is called maximal 
monotone if it is monotone

Proof: If ∂ ( )F x  or ∂ ( )F y is empty, then clearly

∂ ( )− ∂ ( ) − ≥F x F y x y, 0

Is satisfied. If this is not the case, choose 
F F x1 ∈∂ ( )  and F F y2 ∈∂ ( ) .

then

F x y F x F y y H

F y x F y F x
1

2

,

,

− ≥ ( )− ( ) ∀ ∈

− ≥ ( )− ( )





Ὓ

by changing sign in (1.2.1) we get

F F x y
1 2

0− − ≥,

Hence, ն ∂ ( )F x  is a monotone operator

MAIN RESULT

Theorem 3.1

Given (Ω, ℘, µ) a finite measure such that

( )1
1

 
=

= ∑∫ 

n

i
iE

ud c E E
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Exist then for all j satisfying 1 ≤ j ≤ m <α, the 
following holds

i. The sum ( )
1

 
=

= ∩∑ ∑∫
n

i i
j iE

ud j c E E

ii. The product 

( )
1

 
=

   = ∩     ∏ ∑ ∑∫
jn

i i
iE

ud c E E

Proof

1. By induction: If 

( )
2

1 1
1, 2 

=
= = ∩∑ ∑∫ i i

iE

j ud c E E  which is the 

celebrated Bochner integral. If j=2,

( )
2 2

1 1
2 

= =
= ∩∑ ∑∫ i i

i iE

ud c E E

Assume it is true for n=k we now prove it is true 
for n=k+1. Hence

( ) ( )

( ) ( )

1

1 1

1
1

  

 



+

= =

=

= +

= ∩ + ∩

= + ∩

∑ ∑∫ ∫ ∫

∑ ∑

∑

k kE E E
n

i i i i
i i

n

i i
i

ud ud ud

k c E E c E E

k c E E

Therefore, since this is true for n=k+1, hence it is 
true for n=k and then the proof that

( )
1

 
=

= ∩∑ ∑∫
n

i i
j iE

ud j c E E

2. For j=1, the claim is obviously true and for 
n=2

( )
2

2 2 1 1
  

= =

   = = ∩     ∑ ∏ ∑ ∑∫ ∫
n n

i i
i iE E

ud ud c E E

Assume it is true for n=k, then, we now prove it is 
true for n=k+1 such that

( )

( ) ( )

( )

1 1

1 1

1

1 1

1

1

 

 



+ +

= =

= =

+

=

   = ∩     

   = ∩ ∩      

 = ∩  

∑ ∑∫

∑ ∑

∑

k k

i i
i iE

kk n

i i i i
i i

kn

i i
i

ud c E E

c E E c E E

c E E

Since it holds for n=k+1, hence, it holds for n=k.
Therefore

( )
1

1 1
 

+

= =

   = ∩     ∑ ∑∫
jk n

i i
i iE

ud c E E

A good example of this main result can be seen in 
the example on integration by part stated below.

Example 3.1:

Let ( ) , := →f x x f R R

( ) { }

( ) [ ]

sgn if 0, sgn , 0

1,1 if 0

∂ = ≠ = ≠

∂ = − =

xf x x x x x
x

f x x

More examples on generalized gradient can be 
generated using the ones on Quatrata, Krevara, 
Zowe and Rockafella and Wets.
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