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ABSTRACT
What does “infinity” mean? In fact, there are mathematical, physical, and metaphysical definitions of 
this concept. This study will focus on the scripting of the three philosophical foundations of mathematics 
— formalism, intuitionism, and logic-ism — in set theory (Snapper, 1979). Various examples will be 
provided regarding the concept of infinity for these three schools of thought. However, none of them can 
prove whether there is an infinite set or the existence of infinity. As such, it forms the foundational crisis 
of mathematics. Further elaboration on these philosophies leads to ideas of actual, potential, and absolute 
boundlessness, which correspond to three basic definitions of infinity. This thesis aims to correspond 
these philosophies to Roger Penrose’s three world philosophy, in hope of implying the quantum mind. By 
employing rational proof and set theory, there is a likely possibility of building a human-like AI computer. 
To the authors’ best knowledge, this thesis is the first to employ set symbols which connects body, mind, 
and spirit. More specifically, this paper aims to become the mathematical basis for the construction of 
a quantum computer. Using the Basic Metaphor of Infinity, as well as cognitive mechanisms such as 
conceptual metaphors and aspects, one can fully appreciate the transfinite cardinals’ beauty (Nũńez, 
2005). Indeed, the three mathematical philosophies map well with the three types of infinities and further 
fit perfectly with the body, mind, and spirit. In such a case, we may recognize how our set theory can be 
applied elegantly behind through mapping. This further implies the portraiture for something endless is 
anthropomorphic in nature or the perceptions of healing. In simple terms, because there is a connection 
between art and mathematics through infinity, one can enjoy the beauty of boundlessness (Maor, 1986). 
In essence mathematics is the science of researching the limitless.
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INTRODUCTION

What is the concept of infinity? According to 
the Encyclopaedia Britannica, one may refer to 
infinity as the concept about something that is 
endless, unlimited, or without bounds. In 1657, 
the English mathematician John Wallis introduced 
the common symbol “∞”for infinity. One can 
categorize the concept according to three schools 
of thought:
1. Mathematically: The counting points in 

number based on a continuous line, or the 
size of counting numbers sequence such as 1, 2, 
and 3...

2. Physically: Whether the number of stars is 
infinite or whether the universe wills last 
forever

3. Metaphysically: The discussion about god
It is, therefore, important to begin investigating 
the term “infinity” with these definitions in mind. 
Moreover, in the 19th century, Georg Cantor 
proposed what he called “transfinite numbers” 
in set theory. This, in turn, caused a great dispute 
between himself and Leopold Kronecker. Thus, 
one needs to understand the philosophical 
implications of infinity for modern set theory.

LITERATURE REVIEW

When one tries to resolve the conflict between 
Cantor and Kronecker, one needs first to 
understand the arguments behind their views. The 
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following sections will describe their differing 
perceptions on the foundations of mathematical 
philosophy concerning infinity.

Cantor’s formalization of infinity

What is Cantor’s mathematical definition of 
infinity? He developed the idea through set 
al- gebra and proposed what can be termed 
“infinity arithmetic.” Indeed, Cantor earlier tried 
to for- malize his ideas that connected infinity and 
infinite sets. The origin of Cantor’s ideas and their 
sub- sequent development will be explained in 
more depth in the following section.

The origins of cantor’s theory — the paradox 
arisen from Galileo

Galileo Galilei (1564–1642) had the role of acting 
as a physicist, mathematician, and astronomer.
He noticed that intuitively there are:
The same amount of natural numbers as the same 
amount in perfect squares of natural numbers 
(Velickovic, 2010).
One can then draw a one-to-one correspondence 
between them, for example:
“1” is assigned to 12,
“2” is assigned to 22 = 4,
“3” is assigned to 32 = 9,
It should be noted that the meaning of a function 
f in one-to-one is when u1 ≠ u2 => f (u1) ≠ f (u2);
However, there may exist v ∈ V, but one cannot 
find u ∈ U and f (u) = v. Therefore, the number of 
U ≤ the number of V.
At the same time, it is obviously that the set 
which consists of only natural square numbers 
is properly contained in the natural number set[1] 
(Velickovic, 2010). That is, the number of V ≤ 
the number of U.
Thus, one may conclude that the number of 
U = number of V
There must be a one-to-one and onto mapping 
(i.e., bijection) between the above two sets of 
numbers. To be more precise, one will have the 
following definition (as described by Velickovic, 
2010):
Definition: When there are any sets X and Y, X≼Y, 
if there exists an injection from X into Y; X≈Y 
when it is both one-to-one and onto (i.e., bijection) 
mapping between X and Y.

X≼Y Surjective mapping X≈Y

Injective Mapping Surjective Mapping

Bijective mapping

This leads to the following theorem:

Theorem (Cantor-Bernstein)
Given the condition U ≼Vand V≼Y, it is suffices 
to show U≈V.
A brief proof (Rao, 2009) is as follows: This means 
that there are both injection mappings from U to 
V from V to U. Hence, by definition, for every 
element in V, there must be no more than one pre-
image element in U such that f (u) = v, i.e., | U | ≤ 
in | V | where | | means the number of objects in 
the set U or V.
Similarly, for every element in U, there must be no 
more than one pre-image element in V such that 
g(v) = u, i.e.,| V | ≤ | U | where | | means the number 
of objects in the set U or V.
Thus, the | U | = | V | or U≈V. This implies a 
bijection mapping exists between U and V. Details 
of the proof is shown as follows.
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Proposition: X is infinite iffX≈X/{x}, for any x∈X.
Definition: U is countable if U≈ℕ.
The author notes that a set U is said to be countable. 
The condition is a one-to-one and onto mapping 
exists between U and nature number set (or some 
subset of nature number). Thus, one may conclude 
that any finite set U is countable (when a 1-1 and 
onto mapping exists between U and the subset of 
{0, 1, 2 … p-1}. |U|= p where | | is the size of the 
set) (Rao, 2009).

Cantor’s transfinite numbers

As previously mentioned, one can determine 
the count ability of the set indirectly through 
the size of a set. Thus, one has the following 
circumscriptions:
Definition: The size of a set X is defined as the 
cardinality. It is also denoted as |X|, where the 
cardinal is called the transfinite number.
Definition (Bulatov, 2012): | ℕ| is denoted by א˳.
Theorem (Cantor): The set of rational numbers 
ℚis countable.
Proof (Schechter, 2002, Rao, 2009; Velickovic, 
2010):
It is obvious that the nature number is contained 
in the rational number. Then, the size of the nature 
number is smaller than the size of rational number. 
Therefore, our goal is to prove the rational number 
is the subset of the nature number or the size of 
rational number is smaller than the size of nature 
number.
One may erect a f: ℚ→ ℕwith a spiral ladder 
diagram that transmits the concept of this function:

One may further construct the following ordered 
pairs:
(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), (3, 1)…and then 
write each pair in a fractional form,
1/1, 2/1, 1/2, 1/3, 2/2, 3/1…, before deleting those 
repeated pairs and mapping them onto 1, 2, 3, 4, 
5… as follows:
1/1, 2/1, 1/2, 1/3, 3/1…

Obviously, the above mapping is an injection 
between ℚand ℕand hence | ℚ|≤ | ℕ|. One will 
have ℚ≼ℕ. Therefore, with theorem, one will 
obtain ℚ≈ℕ, and by definition 2.1.1.4, ℚis 
countable. This seems straightforward but the 
violation found was so astonishing that Cantor 
said, “I see this result, but just cannot believe it!” 
(Maor, 1986: p.83)
Thus, the members of the set of fractions of 
collections are dense, but the number of members and 
the difference in the distance of natural numbers are 
equal (Maor, 1986). Studying this, Cantor decided to 
give a label to the collection of countable numbers, 
which he called the power of א˳(here א is pronounced 
as “aleph,” the first Hebrew letter). Collections of 
the power of א˳and natural numbers have the same 
number, so they are countable (Maor, 1986).
In addition, given the above proof, one may ask 
(as did Cantor): “Are all infinite sets countable?” 
(Maor, 1986: p.84) To answer this question, this 
study suggests using the following theorem below:
Theorem (Cantor): The set of real numbers ℝ is 
uncountable.
Proof: (Rao, 2009, Maor, 1986) On the contrary, 
suppose there is a bijection f: ℕ→ ℝ[0, 1]. One can 
enumerate the infinite list in general as follows:
r1 = 0.a1a2a3 …
r2 = 0.b1b2b3 …
r3 = 0.c1c2c3 …
Where ai, bi, ci are selected from ℕ.
Then, one may choose a diagonal such that it forms 
a new real number r = 0.a1b2c3 …. Now select the 
real number “t” and started replacing every digit 
of r, such as modifying each digit
yi with (yi+2) mod 10
This research states that the above infinite list of 
real numbers does not contain “t.” On the contrary, 
one may assume “t” existed and it was just the 
kth number as listed in the above. Then, one may 
observe that the difference between r and t lays in 
the kth digit yk such that the
(kth digit) of t = the (kth digit of r plus 2) mod 10.

That is, t ≠ rk for any rk in [0, 1]. Hence, one can 
conclude “t” is indeed a real number but obviously 
“t” cannot be found in the range of the proposed 
function f or [0, 1]. This is a contradiction to the 
fact that f must be a bijective function. Therefore, 
ℝ is uncountable. Cantor used the letter “C” to 
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represent the powerא for a set of rational numbers 
(Maor, 1986).
In this way, Cantor developed hierarchical orders for 
infinity. For example, the power א denoted as C in 
such a set is higher than the hierarchy of the set with 
power א˳. However, there will not be an infinite set 
with a hierarchy of power lower than א˳; even if one 
tried to form a set of ℕ2 and deleted all the non-ℕ2, 
the result would remain the same (Maor, 1986).

The arithmetic of transfinite cardinal numbers

Consider the subsets of a set S = {a, b, c}: one 
can have {a}, {b}, {c}, {a, b}, {a, c}, and {b, c} 
together with an empty set { } and the original 
set {a, b, c} (Maor, 1986). In total, there are eight 
subsets of the set that contain three elements. One 
call the collection of these subsets the power set 
P(S). There are 23 such subsets. The result can be 
extended to any finite set that consists of n elements 
and that has 2n elements for the power set P(N). 
Similarly, Cantor expanded the consequence to 
infinite sets. When one considers the power set P 
(inf) of any infinite set, the number of elements of 
such a set P(inf) is greater than that of the original 
set. This way of thinking was revolutionary and 
unbelievable in Cantor’s time (Maor, 1986).
Cantor concluded: If one starts from any finite or 
infinite set S, one can create a new set P(S) that 
has more elements than set S (Maor, 1986). By 
repeating this process, one can make a newer 
power set. Thus, one can have infinitely many 
hierarchical infinite sets, and each new power set 
introduces a larger new set with larger א. Cantor 
used 4 ,2˳א where in the hierarchy, those sets with 
the same cardinal number are those with one-to-
one correspondence, while those sets with different 
numbers cannot be one-to-one (Maor, 1986).
The cardinal number א˳,

(א2 ˳א(22˳

Cantor named these transfinite cardinal numbers. 
In the case of a finite set, the hierarchical 
relationship is as follows: n < 2n < (22) n<….
When one expands these transfinite cardinal 
numbers, one will have

(א>˳א2.… <˳א(22˳>

Hence, by extending the above comparison, Cantor 
established the so-called arithmetic of transfinite 
cardinal numbers that has some strange rules:
1 + ℵ0 = ℵ0
ℵ0+ ℵ0= ℵ0
ℵ0 *ℵ0 = ℵ0

To conclude, Cantor tried to develop those 
philosophies concerning infinite sets with different 
sizes.[2] Nevertheless, his formalism caused a great 
deal of controversy with Kronecker’s finitism — 
an extreme case for intuitionism. This will be 
discussed more in depth in the next section.

Kronecker’s finitism and intuitive objections 
to transfinite numbers

Kronecker’s finitism is a form of mathematical 
philosophy. The philosophy will accept only 
finite mathematical objects (neglect those infinite 
ones) as its major consideration. Therefore, the 
best way of understanding it is to compare the 
philosophy with the conventional philosophy 
of mathematics where there are some infinite 
mathematical objects (e.g., infinite sets) to be 
considered whenever reasonably. The major idea 
of the field finitistic mathematics asserts the non-
existence of infinite objects such as infinite sets. 
In such case, all-natural numbers are thus existing. 
On the other hand, one may think the set of all-
natural numbers to be a non-existent mathematical 
object. Therefore, one cannot quantify any infinite 
domains in a relevant way. One of the most famous 
mathematical theories in finitism is Skolem’s 
primitive recursive arithmetic.[3]

Indeed, one can prove the non-existence of infinite 
sets by the following counter-example:
Consider a set S = {66454517, 3, and 507}. One 
can rewrite it as 664545177 03 507
1. Construct a number from a diagonal by taking 

the “units” digit from the first number, that is, 
“7” in this case

2. Next, one obtains the “tens” digit from the 
following number by adding a zero before “3”

3. Continue the recursive process until one 
obtains “507,” which is just in the set S

4. The last step is to change each digit in the 
“found” number to any other digit. For 
example, 5 changes to 9, 0 changes to 1 and 7 
could also change to 1

5. The result is “911.”
However, the number is not in the set. This counter-
example tells us that one cannot have a complete 
set of ALL-natural numbers as one will always 
find some numbers not in the set. Cantor’s proof 
assumes that “infinitely many” is a valid idea, and 
it is employed in disproving the above counter-
argument. According to Cantor, one can always 
create a number that is not in the set S but that 
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has “infinitely many” digits. Hence, the created 
number is not a natural one and consequently must 
not be in the set S.
Even if one accepts that “infinitely many” is a 
valid idea, the counter-example is still true. This 
is because some digits created by the recursive 
process have a finite number of digit places away 
from the lowest-value digit. At the same time, 
other digits must have an infinite number of places 
away from the lowest-value digit. Obviously, there 
is an inconsistency that should not occur since the 
recursive process is uniform. Therefore, finitism 
demonstrates that Cantor’s formalization of an 
infinite set is invalid and that only finite sets exist.
These serious criticisms were one of the reasons 
why Cantor became gloomy (Maor, 1986). His 
former teacher, the famous mathematician Leopold 
Kronecker, tried to attack transfinite numbers even 
more. In fact, Kronecker was very conservative 
and not only resisted the concept of the infinite 
but also commented on those mathematical 
theories based on natural numbers. The reason 
for these attacks was not purely academic but also 
due to jealousy. He saw his student’s reputation 
becoming greater than his own. Sadly, Cantor died 
in a mental hospital in 1918 (Maor, 1986).
To summarize, through Kronecker’s finitism (the 
non-existence of infinite sets) and an intuitive 
recursive process, one can illustrate that there 
are no Cantor transfinite numbers and hence all 
the philosophies mentioned in section 2.1 fail. 
After reviewing the relation between infinite sets 
and formalism and intuitionism, this study will 
proceed to discuss Dedekind and logic-ism in the 
next section.

Dedekind’s infinite set and logic-ism

According to Dedekind:
“A set X is infinite if only if it is equivalent to a 
proper subset of itself.”[4]

Given sets S and T, they are said to be equivalent 
if and only if there exists a bijection f: S → T 
between elements of S and those of T.
Proof:
Case I: the “if”[4] part
Let X be an infinite set. Since every infinite set 
has a countably infinite subset, one can possibly 
construct one from X.
Suppose S = {a1, a2, a3 …} is a countably infinite 
subset of X. One can create a partition of S into:
S1 = {a1, a3, a5 …} and S2 = {a2, a4, a6 …}

In addition, assume that there exists a bijection 
established between S and S1 such that an  an-1
One can further extend the bijection between
Sᴗ(\XS=X and S1ᴗ(X\S)=X\S2
One can demonstrate that a bijection can be 
created between T and one of its proper subsets 
TS2. Hence, one can conclude that if X is infinite, 
then it is equivalent to one of its proper subsets.
Case II: the “only if”[4] part
In contrast, suppose that X is equivalent to one of 
its proper subsets, say X0,
that is, X0⊂X, and there exists a bijection f: X → 
X0. Nevertheless, there is no bijection between the 
finite set and its proper subset. Therefore, X must 
be infinite.
Indeed, Dummett (1991, p.49) offered a critique 
of Dedekind’s infinite set theory as follows:
In Dedekind’s philosophy of mathematics, human 
mind can create mathematical objects freely. The 
idea, with his contemporaries shared widely, our 
minds can also operate and create abstract objects. 
This result can lead to a solipsistic mathematics 
conception; implicitly, each subject is entitled 
with this conception to feel assurance. Actually, he 
creates the mathematical objects by means of his 
own mental operations. These objects will finally 
coincide with its properties and what others have 
created through analogous operations. For Frege, 
such an assurance was not foundational: for him, we 
have the subjective content in our minds. The reason 
is one cannot find the way to compare them; one 
cannot know whether his idea is the same as others.
After reviewing the three categories of philosophy, 
one finds that none of them can fully explain 
the concept of infinity in mathematics. Further 
work should be done by mathematicians and 
philosophers to create a model for the concept 
(Lam, 2016). However, one should still appreciate 
the beauty in the method of the various proofs 
of infinity in these schools. In addition to these 
proofs, there are also daily examples of teaching 
infinity through mathematical philosophy; these 
will be discussed in detail in the next section.[1-10]

Examples of teaching infinity using 
mathematical philosophy

During every day learning at university, the present 
author has encountered several different concepts 
of infinity in mathematics. These will now be 
discussed one by one by applying mathematical 
philosophy.
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Teaching calculus using the concept of a limit 
in formalism

One of the most famous examples of teaching 
the idea of infinity is calculus. It allows one to 
formally teach the concept of a limit. First, one 
should understand the well-known paradoxes of 
motion:
The tortoise has a head start of about 100 m in 
front of Achilles, for example. Suppose that each 
of the racers begins running with some steady 
different speed (one moves very quick while 
another one is very slow). For some amount of 
countable time, Achilles runs to 100 m in which 
it is just the tortoise’s early beginning. In this 
period, the tortoise has a displacement of only 
10 m. Obviously Achilles needs some more time 
to run through this 10 m. After that, suppose 
the tortoise will displace further apart from the 
previous passing point at 110 m. Then Achilles 
requires some more time before reaching the 
third point, while at the same time, the tortoise 
is still moving slowly ahead to the forth point. 
Thus, whenever and wherever Achilles reaches 
the tortoise that it has already been, he always has 
to go farther. Therefore, since there are an infinite 
number of points, Achilles must follow the tortoise 
afterwards that it has stayed the moment before. 
Conclusively, he can never get over the tortoise.
Long before Cantor, Zeno’s paradoxes (Zeno of 
Elea, 490–425 BC) showed how poor the people’s 
understanding was of the concept of infinity:
“There is no motion, because to get anywhere 
you’d first have to get halfway, and before that 
you’d have to get a quarter of the way, etc.” 
(Schechter, 2002: p.3)

The figure above shows one of Zeno’s Paradoxes 
(Maor, 1986, p.34). It shows how much worse the 
knowledge of infinity was before Cantor.
At present, one can explain Zeno’s Paradox as 
follows:
1/2 + 1/4 + 1/8 + 1/16 + 1/32 +… = 1, which is an 
infinite series with the sum equal to the limit of 
the finite partial sums.

Indeed, one will never get to 1. The infinite series 
should be rewritten as:
… + 1/32 + 1/16 + 1/8 + 1/4 + 1/2 = 1
This means that one will have infinitely many 
steps before one reaches 1/2 of the way or 1/4 of 
the way. If each step takes 1 s, one will never get 
anywhere (Schechter, 2002).
Nevertheless, when one take an in-depth look at 
the infinite series, if there is a sufficient number 
of items with a common ratio equal to “1/2,” then 
the sum of the series can be arbitrarily approached 
closer to 1 (Maor, 1986). Suppose that the runner 
has a constant speed “s,” and then the time needed 
between two points is directly proportional to 
the distance travelled. Therefore, the total period 
required for the whole journey is the sum of the 
series multiplied by the constant “s.”
Hence, only a limited time is used for the travelling 
and this solves the controversy. The ancient Greeks 
did not believe that infinite series converge on a 
limit (Maor, 1986).
In reality, for the sequence 1, 1/2, 1/4… 1/n, the 
limit is zero (Maor, 1986). As n increases, the 
value in the sequence decreases and tends towards 
zero but will never equal zero. This means that if 
one has a sufficiently large n, the sequence an can 
arbitrarily approach close to zero. For example, if 
one needs an to be smaller than one in a thousand, 
then one requires n to be larger than one thousand. 
Similarly, one can even make an as close as one in 
ten billion (Maor, 1986).
However, mathematicians did not like this kind of 
a lengthy explanation. They preferred a simpler 
description (Maor, 1986):
Thus, one can represent the sequence by 1/nnd of 
a leng∞hus,lim 1/n = 0.n→∞.
The term liman is a kind of symbol under 
mathematical rules meaning the “Limiting value 
of…” when n tends to infinity. It clearly connects 
the ideas of endlessness and formalism. To be 
more precise, an abstract definition of a limit may 
be as follows:
Suppose there exists a finite value “a,” then for any 
given positive integer ε, there is always a positive 
integer N(ε) such that n > N, |xn – a| <ε; then one 
says the sequence {xn} tends to a limit “a;”
limxn= a; xn→a (Fudan, 1978)
n 1
After reviewing the example concerning the 
origins of linking and teaching the concept of a 
limit (a kind of an infinity, as well as calculus) and 
formalism, one may proceed to the second part.
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Using geometry to learn infinity mathematics 
intuitively[11-14]

Consider the following function (Maor, 
1986): y = 1/x, where the diagram is likely 
described as follows:

The above figure on the left shows a hyperbola 
(positive branch). Suppose it rotates around the 
x- axis; then it becomes a hyperbolic rotator, as 
shown on the right. If one integrates the surface 
area from x = 1 to the infinity of the rotator, 
the area becomes infinitely large. To be more 
precise, one can show that when calculating the 
corresponding surface area from x = 1 to some 
value >1 such as t and letting “t” tend to infinity, 
there will be no bounds on the area. However, 
the corresponding rotator’s volume will tend to 
a certain limited value. In other words, there is 
a limit on the volume for the infinite 3D figure. 
If one wants to paint on the surface of the 3D 
figure, the job cannot be finished, as one needs 
an infinite amount of paint. On the other hand, 
if one paints the surface inside the rotator, then 
it is finite. This paradox cannot find a simple 
explanation and tells us that when anything is 
related to the concept of infinity, one’s intuition 
can produce errors (Maor, 1986).
Furthermore, relationships exist between these 
paradoxes and the so-called “morbid functions.” 
For example, if one considers y = sin(1/x), which 
has some special properties (Maor, 1986), as 
follows:
1. When x approaches zero, the graph of the 

function’s oscillation becomes larger; thus, 
it can never be depicted completely. If one 
compares it with the hyperbola’s graph, there 
is also a “discontinuity” when x = 0. However, 
the difference is that this function’s graph will 
not tend to infinity, but only the oscillation 
frequency becomes infinite

2. If one considers the related function 
y = xsin(1/x), the singular point x = 0 will 
disappear and hence the function becomes 
continuous.

( ) {1 1 when 
f x 1 when 

x
x − − ∉

= ∈

Then, for the upper line y = 1, there is an 
uncountable number of holes since ℝ is 
uncountable. On the other hand, for y = −1, 
there are a countable number of holes, as ℚ is 
countable. This special function discontinues 
everywhere and leads to controversies. As a 
result, the concept of “continuous” is redefined 
(Maor, 1986).[15-20]

To conclude, as stated by Jones et al. (2004: 
p.5), one may define “geometrical intuition” 
as a kind of skill to develop and compute 
geometrical figures the process of our mind. To 
see geometrical properties, one may relate images 
to different concepts and theorems in the field of 
geometry, and also decide where to start during 
the steps in solving geometrical problems. Thus, 
we highly recommend teachers should make 
use of the tasks that require students to imagine, 
manipulate geometrical figures as the result to 
link these geometrical intuition more directly with 
geometrical theory and finally involve the active 
use of imagination skills.

Applying contradictory logic-ism to studying 
infinity algebra

When one is concerned with contradictions in 
infinity, one might refer to an analogy proposed 
by the philosopher William Lane Craig who was 
involved in the calculations of certain kinds of 
infinite sets: “Imagine that one has an infinite 
number of marbles in his possession and he 
wants to give others some of them. In addition, 
suppose one (say A) wants to give the other one 
(say B) an infinite number of marbles.” (Sewell, 
2010: p.18)
Case I: One (A) could do that by giving all marbles 
to the other (B). Hence, A will have zero mar- bles 
left for himself or herself, i.e., ℵ0 - ℵ0 = 0.
Case II: Alternatively, A gives B all the odd 
numbered marbles. Then, A will still have an 
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infinite number left for himself or herself, and B 
will also have an infinite set, that is, ℵ0 - ℵ0 = ℵ0.
Obviously, the above two cases show contradictory 
results (0 and ℵ0). However, subtraction and 
division of sets of equal amounts should not produce 
them. These collisions cast doubt on the idea that 
the infinite can be treated as a coherent notion 
(Sewell, 2010). Nevertheless, other philosophers 
such as Morrisionand Gumiski believe that there 
are discrepancies between subtracting infinite sets 
in transfinite mathematics (which will normally 
result in absurdities). The “removal” of one 
infinite set from another does not happen in the 
present real world (Sewell, 2010). In addition, the 
present author notes that the paradox leads to the 
logical contradiction of an infinite set being both 
“divisible” and yet “not divisible,” which results 
in both a mathematical and a logical contradiction. 
There cannot be an infinite set of marbles or an 
infinite set of anything (Sewell, 2010). Thus, this 
may lead to the concept of indefiniteness, which 
can resolve the problem. After discussing the 
views and examples from the three categories of 
philosophy of mathematical infinity, one turns to 
the philosophical implications.

DISCUSSION — TYPES OF INFINITY 
AND THEIR PHILOSOPHICAL 
IMPLICATIONS

For each kind of mathematical philosophy, there 
are matters of corresponding philosophical 
significance such as the count ability of numbers, 
the start of the universe and the big bang, as well 
as the existence of God.[21]

Cantor’s theory implies actual limitlessness 
(or the body) — the count ability of numbers

What is actual limitlessness? One usually refers to 
the concept as an ongoing process that is repeated 
over and over, but it is conceived as being 
“completed” or as having a final resultant state 
(Núñez, 2005). For instance, one can contemplate 
the sequence of regular polygons with an increasing 
number of sides where the distance from the center 
to any of the vertices remains constant. Indeed, 
one always begins with a triangle, then a square, 
a pentagon, a hexagon, and so on endlessly until 
the process changes a triangle into a circle. This 
is because after each iteration; there is an increase 
in one in the number of sides: the side’s length 

decreases, but the distance “r” between the center 
of the polygon and the vertices remains the same. 
As one continues the process, the area and the 
perimeter of the polygon increasingly approach 
closer to the value of πr2 and 2πr, respectively. 
The circle has all the prototypical properties that 
circles must have, but conceptually it is a polygon. 
“The main theme of Cantor’s Grundlagen is that 
there are multiple actual infinities because there is 
a realm of an actual, but increasable infinite known 
as the transfinite.” (Newstead, 2009: p.536). This 
is the reason why it is proposed here that there 
is a connection between actual limitlessness and 
Cantor’s theory of transfinite numbers. Through 
these cardinals, one can tell the count ability of 
“natural,” “rational,” and even “real” numbers as 
mentioned earlier.

Kronecker’s disagreement suggests potential 
boundlessness (or the mind) — big bang 
theory

In contrast, potential boundlessness means “a 
non-terminating process (such as “add 1 to 
the previous number”) produces an unending 
“infinite” sequence of results, but each individual 
result is finite and is achieved in a finite number 
of steps.” It is proposed here that this definition 
is related to Kronecker’s finitism as well as 
Skolem’s primitive recursive arithmetic. In fact, 
according to Craig, the past is made up of a series 
of events (E1, E2…En). Usually, one refers to “the 
past” as the set of all these events. Hence, the past 
cannot be an actual infinity. If one begins with 
a single event and adds one another gradually, 
one will never obtain an actual infinite number 
of events. What one ends up with is a set whose 
number of constituents becomes ever larger and 
tends toward infinity but never actually reaches it. 
This is defined as a “potential infinity.” Therefore, 
it appears to the present author that there must be a 
beginning of time. What are entailed by “potential 
boundlessness” are the Big Bang theory and thus 
a “start of the universe.”
Recently, some astronomers have combined 
observations and mathematical models to develop 
a workable theory of how the universe came to 
be.[14] According to their theory, our universe 
previously existed as a “singularity” 13.7 billion 
years ago.[16] Singularities are thought to be “black 
holes” with intense gravitational pressure where 
finite matter is crushed into infinite density. Our 
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universe is believed to have started as an infinitely 
hot, infinitesimally small, infinitely dense, 
something — a singularity. Beyond the initial 
shape, the singularity seemingly inflated (the so-
called “Big Bang”), cooled and expanded, and 
began changing from being extremely small and 
extremely hot to the current temperature and size 
of the universe.
The process is ongoing, and human beings are 
a part of it — incredible creatures that live on a 
unique planet, circling a beautiful star. The planet 
is also clustered with some hundred billion other 
stars in a galaxy soaring through the cosmos. All 
this is happening inside an expanding universe that 
began as an infinitesimal singularity that appeared 
out of nowhere and for reasons unknown. This is 
one suggestion of what the Big Bang theory is.[16]

Dedekind’s concept describes absolute 
endlessness (or the spirit) — the existence of 
god

What is the definition of absolute endlessness? Some 
philosophers believe that the Class V of all sets, the 
mindscape, the cosmos, and God are all examples 
of what “absolute” is. Indeed, one may define the 
term “absolute” in the sense of “non-relative, non-
subjective.”[17] The absolute itself exists together 
with the highest form of completeness. In fact, there 
is a relationship between the limitlessness of God 
and mathematical infinity. As St. Gregory said, “No 
matter how far our mind may have progressed in 
the contemplation of God, it does not attain to what 
He is, but to what is beneath Him.” (Rucker, 2013: 
p.44) In such a case, one is now at the starting point 
of the infinite dialectic process since one is trying to 
establish an image of the whole mindscape.
The dialectic process happens in the following 
way:
1. First, one collects a group of thoughts into a 

single thought T
2. When one is in a conscious state of mind T, a 

new thought is then constructed that one has 
not yet accounted for previously

3. One’s mindscape is improved in terms of 
thought, including the elements of T plus T 
itself.

In mathematical symbolic terms, one may consider 
the nth thought Tn that one can define inductively 
as follows: To = ∅ and Tn + 1 = Tn U {Tn}, for any 
sets A and B. AUB means the set of all the sets 
that are members of A or B. Nevertheless, one 

may have another inductive definition: Tn = {Tm: 
m<n}, which means that “Tn is the set of all Tm 
such that m is less than n.”[17] However, T plus “T” 
is not always different from the thought T. In the 
case of a mind M, it is already fully self-aware 
and therefore M plus “M” is no different from M., 
that is, M U {M} = M. Rucker (2013) discusses 
in detail “absolute” in terms of the rational and 
mystical. Indeed, in 1887, one of Cantor’s friends, 
Richard Dedekind, published a proof and claimed 
that the mindscape is infinite. Dedekind’s term for 
the mindscape was Gedankenwelt, which literally 
means “thought-world.”
By continuing the repetitive process, Dedekind 
proved the infinitude of the mindscape:
{s, s is a possible thought, s is a possible thought 
is a possible thought,...}
Therefore, this shows that the class of all sets, the 
mindscape and the class of all true propositions, are 
all infinite. In similar terms, one can tell whether 
God is endless. There are comments about.
God’s existence in Rucker’s work; however, this 
author believes in the existence of God and his 
being “absolute.”
To sum up, the three mathematical philosophies 
map well with the three types of infinities and 
further fit perfectly with the body, mind and spirit. 
In such a case, we may recognize how our set 
theory can be applied elegantly behind through 
mapping. This further implies the portraiture for 
something endless is anthropomorphic in nature 
or the perceptions of healing (Kusilka, 2014). The 
theory of perception healing may thus be arisen 
(Bedford, 2012). However, this is out of the scope 
of the present discussion.

CONCLUSIONS — INFINITY ACTS 
AS A LINK BETWEEN ART AND 
MATHEMATICS

After reviewing, providing examples and 
discussing infinity, the question remains, “What is 
the role of limitlessness?” This study finds that it 
acts as a connection between art and mathematics. 
For example, one can appreciate the beauty of 
transfinite cardinals and hence imply that the 
portrait of infinity has a human face (Nũńez, 2005):
1. Aspectual systems consist of continuative and 

iterative processes, ideal and non-ideal structures 
with a starting and completion status, etc.

2. Conceptual metaphors, as in the case of Cantor’s 
metaphor that the same number is pair ability
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3. Conceptual blending, such as the use of 
multiple implicit basic mappings of infinity in 
Cantor’s proofs

Indeed, Cantor’s theories and proofs often worked 
against mainstream mathematical thought and that 
is why he surprised many people (Carey, 2005). 
His idea also caused discomfort among certain 
mathematics professionals. As Meschkowski so 
eloquently wrote, “Cantor’s theorem is thus a 
beautiful example of a mathematical paradox, of 
a true statement which seems to be false to the 
uninformed” (quoted. in Dauben, 1979).
Nevertheless, what a mathematician focuses on 
with infinity is that “Mathematics takes us into 
the region of absolute necessity to which not only 
the actual world, but every possible world, must 
conform.” (Egner et al., 2009: p. 229).
From a philosopher’s point of view, “Mathematics 
is an ideal world and an eternal edifice of truth… 
In the contemplation of its serene beauty man 
can find refuge from the world full of evil and 
suffering.”(Copleston, 1966: p. 438).
According to the astronomer James Jeans (1877–
1946), “God is a mathematician” and most 
mathematicians say “God made the numbers. All 
the rest is made by human.” (Peat, 2009: p.28).
In a nutshell, it is suggested here that mathematics 
is the science of studying infinity. When one 
discusses its daily applications, these may include 
calculating the gravitational force of infinite 
mass, determining whether infinity exists in our 
physical universe, making infinite regression 
arguments, computing arithmetic overflow, 
dividing by zero, etc.
The poem’s study found the following:
“This lonely hill was always dear to me, and this 
hedgerow, which cuts off the view of so much of 
the last horizon. But sitting here and gazing, I can 
see beyond, in my mind’s eye unending spaces, and 
superhuman silences, and depthless calm, till what 
I feels almost fear. And when I hear the wind stir 
in these branches, I begin comparing that endless 
stillness with this noise: And the eternal comes to 
mind, and the dead seasons, and the present living 
one, and how it sounds. So my mind sinks in this 
immensity: and foundering is sweet in such a sea” 
(Giacomo, 1819: p. 106).

Limitations

There are limitations to this thesis. They are as 
follows:

Cantor’s theory may not be true, but it can be 
modified so that it contains no mistakes. One of 
the defects in Cantor’s theory is Russell’s paradox, 
as follows:
“If S were the set of all sets then P(S) would at the 
same time be bigger than S and a subset of S.”
To avoid such a paradox, one may extend set 
theory into the ‘New
Foundation’ (NF) set theory. Instead of assuming 
a set, we consider {s ∈S: s ∉f(s)} as a local ‘type 
theory’ and as a set in NF. One can then easily 
show by proof of contradiction that

( ) ( )P S P S

and eliminate Russell’s Paradox.
Since my special “rationalization” is based on 
the assumptions of both set theory and logic, 
it may fail if one challenges the validity of the 
premises. This is the question of Platonism and 
anti- Platonism. Another main result of Cantor’s 
theory is the famous “Continuum Hypothesis” 
problem: Does any set exist that has a cardinality 
between a natural number and a real number?
One may even extend the above problem as 
follows: Does any set exist that has a size between 
|S| and |P(S)| for some infinite S? that is, the 
Generalized Continuum Hypothesis problem.
This author’s answer is that there are various 
mathematical structures that exist between natural 
and real numbers. One may sub-divide them into as 
small parts as possible. Their cardinality converges 
to either card (N) or card (R). The problem of the 
continuum hypothesis is just our analogue world, 
which is continuous (or our real and human world).
However, the digital world is only “0” — card 
(N) and “1” — card(R). At the same time, one 
can make the analog one as detailed as one wants 
since there are structures between N and R.
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