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ABSTRACT
Lam, May 2016, explained how mathematics is not only a technical subject but also a cultural one. As such, 
mathematical proofs and definitions, instead of simply numerical calculations, are essential for students 
when learning the subject. Hence, there must be a change in Hong Kong’s local teachers’ pedagogies. 
This author suggests three alternative ways to teach mathematical philosophy through infinity. These 
alternatives are as follows: (1) Teach the concept of a limit in formalism through storytelling, (2) use 
geometry to intuitively learn infinity through constructivism, and (3) implement schematic stages for 
proof by contradiction. Simultaneously, teachers should also be aware of the difficulties among students 
in understanding different abstract concepts. These challenges include the following: (1) Struggles with 
the concept of a limit, (2) mistakes in intuitively computing infinity, and (3) challenges in handling the 
method of proof by contradiction. By adopting these, alternative approaches can provide the necessary 
support to pupils trying to comprehend the above mentioned difficult mathematical ideas and ultimately 
transform students’ beliefs (Rolka et al., 2007). One can analyze these changed beliefs against the 
background of conceptual change. According to Davis (2001), “this change implies conceiving of 
teaching as facilitating, rather than managing learning and changing roles from the sage on the stage to a 
guide on the side.” As a result, Hong Kong’s academic results in mathematics should hopefully improve.
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INTRODUCTION

There are numerous concerns about the decline in 
Hong Kong students’ performance in mathematics. 
It is important to identify the reasons for this decline 
and to find feasible ways to improve the situation. 
Therefore, it is important to investigate both the 
teaching and learning processes of mathematics 
in local classrooms. The purpose of this study is 
to explore the importance of using mathematical 
philosophy in Hong Kong’s secondary schools. 
First, the study analyses the academic background 
of selected teachers. Understanding their 
mathematical and professional knowledge can 
help derive suggestions for improvement and 
enable teachers to understand the difficulties 
students face in relation to proofs and definitions 
in theories. Teachers will then be able to more 

clearly provide suitable assistance to students 
trying to comprehend relevant mathematical 
ideas. As a result, there should be an increase in 
students’ mathematics ability. A prime application 
of this teaching and learning philosophy is through 
the concept of infinity.

LITERATURE REVIEW

First, this study will investigate the academic 
and professional background of the selected 
teachers. As described above, recommendations 
will be made in how to present the concept of 
mathematical infinity.

Problem-Based Learning (PBL)

This study suggests that the concept of infinity 
be introduced through PBL. According to 
SUNT, winter, 2001, PBL is a method in which 
students collaborate with their classmates to solve 
complicated and conclusive problems. PBL can 
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help students develop content knowledge, problem-
solving ability, reasoning, communication, and 
self-assessment skills. In enables students to 
be interested in the course materials because 
they are learning necessary skills in a relevant 
field. PBL keeps learning active and includes 
important social and contextual factors, which 
can influence the constructive process (Barrows, 
1996; Gijselaers, 1996). In 1996, Wilkerson and 
Gijselaers claimed that the main characteristic of 
PBL is that it is student centered, while teachers 
act only as facilitators rather than disseminators.
Teachers use open-ended problems (or ill-
structured problems) as an initial stimulus and 
framework for students’ learning (Wilkerson and 
Gijselaers, 1996). The main duty of teachers is to 
develop students’ interest in a subject. Rather than 
recalling information, pupils are required to learn 
on their own through group work and become 
self-directed learners (SUNT, winter, 2001).
In practice, teachers can introduce the concept 
of infinity through the following open-ended 
questions:
OPEQ1: Consider a frog jumping towards the 
edge of the pond, each time halving the distance it 
jumps. Can it reach the edge of the pond?
OPEQ2: Think carefully about Gabriel’s Wedding 
Cake, with its elaborate circular layers. Can the 
top and sides of all the layers be frosted?
OPEQ3: Can a quadrilateral be cyclic when the 
sum of the pairs of opposite angles is 180°?
Lam, August 2016, provides various suggestions 
of examples to use when introducing the concept 
of infinity. Some of those suggestions will be 
explored in the following section.

Recommendations for teaching pedagogy

Teaching the concept of limit in formalism using 
story telling
One of the most famous ways to teach the concept 
of infinity is using calculus, which allows formal 
instruction on the concept of a limit. First, a 
teacher should recount the following story for 
primary students:
“A frog is sitting in the middle of a 4-m-diameter 
circular pond, on a lily pad.
It jumps 1 m toward the edge of pond (onto 
another lily pad) and keeps jumping towards the 
edge. However, the frog gets more and more tired 
after each successive jump and only jumps half 
the distance of the previous jump. It does not take 

much thought to figure out that the frog never 
reaches the edge in any finite amount of time, 
assuming the jumping time (including the time 
between jumps) is constant.
“Now assume that as the frog nears the edge of 
the pond, it gets more and more excited about 
reaching the edge, and on each successive jump, it 
doubles the jump rate (including the time between 
jumps). However, its legs still get tired, so each 
successive jump is only half the distance of the 
preceding one.[1]

“Can the frog reach the edge of the pond?”
The above philosophical story can be viewed as 
a paradox of motion. Lam, August, 2016, shows 
detailed mathematical knowledge of the concept 
of a limit is required of teachers. Suggestions for 
teaching pedagogy are as follows (Liang, 2016):
1. Recognition of misconceptions: In class, 

teachers can ask students to solve and 
explain the problem of the frog reaching the 
edge. Obviously, different students will give 
different solutions and explanations. Based on 
their statements and understanding, teachers 
can then categorize the character of them is 
conceptions.

2.	 Clarification:	 Under	 the	 supervision	 of	
teachers, students are encouraged to discuss 
the pros and cons of the proposed results for 
the problem. After debate among the students, 
the proposed results survive is eliminated 
or remain undecided. Teachers must then 
summarize the misconceptions, with some 
being unique and others more common.

3. Confront misconceptions: Teachers can 
point out students’ illogical responses and 
provide counter-examples to address their 
misconceptions of the problem. The formal 
concept should make sense.

4.	 Accommodation:	Students	are	finally	willing	
to accept the new knowledge of a limit and 
change their misconceptions.

However, there are several limitations to the above 
conceptual conflict strategy (Liang, 2016). First, it 
is difficult for individuals to reject their old ways 
of thinking.
Second, the strategy is not revolutionary in 
reconstructing students’ ways of thinking. Third, 
it cannot be applied to all teaching settings (Liang, 
2016). Although there are critics of this strategy, 
this author still believes that by discovering the 
misconceptions surrounding the idea of a limit 
through discussion, teachers can help students 
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confront their challenges. This leads to a conceptual 
change, and students acquire new knowledge.
After discussing the pedagogy for teaching the 
concept of limit in formalism, this paper proceeds 
to recommendations for intuitively teaching 
infinity computation.

Using geometry to intuitively learn infinity through 
constructivism
Teachers can constructively introduce Gabriel’s 
Wedding Cake to junior secondary school students 
through the guided activity presented below2. It is 
important to note that an activity is said to be of 
a constructive instructional design if it fulfills the 
criteria (Murphy, 1997a and Jonassen, 1994: p.35) 
described as follows:
1. There are multiple representations of reality.
2. The complexity of the natural world is shown.
3. Knowledge can be constructed rather than 

reproduced.
4. Tasks avoid abstract instructions and instead 

present contextualized instructions.
5. Teachers provide real-world, case-based 

learning environments, and prevent 
predetermined instructional sequences.

6.	 Student	reflection	is	encouraged.
7. Content and context-dependent knowledge is 

constructed.
8. Knowledge is constructed collaboratively 

from social negotiation.
The results of Gabriel’s Wedding Cake lead to a 
famous and beautiful paradox: While the volume 
of the cake is finite, one cannot frost the cake. As a 
result, a cognitive conflict occurs among students, 
and it is up to teachers to aid in solving the 
problem. To do so, teachers must do the following 
(Sayce, 2010):
1. Lead the discussion: Teachers must use an 

effective strategy for managing discussions 
(Swan, 2005). Teachers should prepare open 
and probing questions in advance but be ready 
for unexpected responses to questions.

2. Keep up motivation: Teachers must maintain 
students’	 motivation	 in	 light	 of	 the	 conflict	
raised. Thus, teachers should praise learners 
for a variety of reasons. It is necessary to 
remove	 the	 fixation	 away	 from	 getting	 the	
right answer and refocus on the thinking 
itself (de Geest, 2007). Learners must value 
the process of learning, and in addition, 
teachers’ praise is helpful to those who are 

underachieving (Boaler, 2009) or for those 
with	a	fixed	intelligence	belief	and	fear	failure	
(Dweck, 2000).

3.	 Prepare	 learners	 for	 the	 conflict:	 Since	 the	
work is an emotional experience, it is helpful 
for learners and teachers to be encouraged in 
working in this way and keep up enthusiasm. 
Although they might not make much progress 
initially or be considered to “not be doing 
proper work,” this method is still an effective 
way to learn. On the other hand, if students 
cannot	always	obtain	a	definitive	answer,	they	
might become de-motivated and feel as if they 
are “learning nothing.”

4. Provide a common language: A common 
language is needed between teachers and 
learners to be able to describe, explain, and 
discuss the problem and listen to each other.

If the two sides of the conflict cannot be 
connected, then students can actively participate 
in finding reasons for the cognitive dissonance. 
Certainly, there are critics of the above-proposed 
resolution teaching theory; however, this author 
believes that teachers should maintain students’ 
motivation for addressing the conflict and lead 
a discussion before arriving at a conclusion. 
Language is a determining factor of the successful 
implementation of this philosophy.

Schematic stages for proof by contradiction
To teach using a dynamic geometry environment 
(DGE), a teacher must create a cognitive conflict 
for students (Arshavsky). During a lesson, a 
teacher should show students a quadrilateral with 
its vertices dragged around (Fujita et al., 2007). 
Students should be asked characterize and define 
the figure and to justify their conclusion. The 
categorization of the results will vary considerably 
when the students try to draw the collinear of the 
three vertices of the quadrilateral or the intersection 
of the two sides. This activity produces cognitive 
conflict, which can then be used as a starting 
point for the discussion of the role of definitions 
in mathematics (Fujita et al., 2007). Lopez et al. 
developed the “Argumentative Stages of a Proof 
by Contradiction in DGE,” which is described as 
follows (Lopez et al., 2002):
Initial Argumentative Stage – Construction of a 
biased dynamic geometry micro-world.
1. “A” (e.g., a quadrilateral ABCD) – a type of 

geometrical	configuration	in	DGE
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2. Impose condition “C(A)” (e.g., interior 
opposite angles are supplementary) on “A”

3. A biased DGE labeling with a forced 
presupposition C(A) (e.g., the arbitrary 
labeling of∠DAB=2a and ∠DCB=180-2a)
Second Argumentative Stage – Construction 
of a pseudo-object

4. Observation guided by geometrical intuition: 
a kind of hybrid state between the visual-true 
DGE and a pseudo-true rationale of “C(A)”

5. Construction of a pseudo-object “O(A)” 
that inherits internal inconsistency (e.g., a 
quadrilateral EBFD)Third Argumentative 
Stage – Discovery of a locus of validity

6. Employ the drag-until-vanish strategy on 
“O (A):” When part of A is being dragged 
to different positions, “O(A)” might vanish 
(i.e.,	a	plane	figure	to	a	line,	a	line	to	a	point).

7. Discovery of a locus of validity associated 
with “O(A),” where the biased micro-world is 
realized in the Euclidean world

Final Argumentative Stage – Make conjecture and 
organize a proof by contradiction.
The pedagogy presented above represents a way 
to teach proof by contradiction in a step-by-step 
approach. According to H and J’s Reduction ad 
Absurdum proof, one may consider the behavior 
of the pseudo-quadrilateral as a meta-pattern found 
among patterns. Hence, interactions between the 
person and the DGE are a determining factor 
of the successful achievement of insight and 
understanding. This author believes that students 
can handle this form of interplay in a better and 
more cognitive way through the above schematic 
stages of argumentative activity.

Proposed research methodology

There are numerous concerns about why and how 
to apply philosophy when teaching mathematics to 
Hong Kong secondary school students. Therefore, 
an empirical case study is performed to answer 
these questions.

Research strategy – case study

There are many strategies that can be implemented 
in studying social science, including case studies, 
surveys and histories (Chan, 2009). Case studies can 
be adopted to bridge the gap between experiments 
and theories concerning the use of mathematical 

philosophy in daily lessons. In this study, case 
studies are used to examine the understanding of 
infinity among secondary students by addressing 
two basic research questions:
RQ 1: Why should there be a shift to philosophical 
proof in our Hong Kong secondary school 
curriculum?
RQ 2: How should teachers introduce the concept 
of infinity through different pedagogies? Answering 
these questions can improve the understanding of the 
importance of philosophy, especially in the field of 
mathematics education. Moreover, Yin, 1994 states:
“A case study is an empirical inquiry that 
investigates a contemporary phenomenon 
within its real- life context, especially when the 
boundaries between phenomenon and context are 
not clearly evident” (p.13).
In general terms, a case study is a naturalistic 
inquiry for a large setting-specific instance (Chan, 
2009). At the same time, it is open to findings 
that do not have predetermined constraints. 
Anthropologists sometimes label a case study as 
a “thick description” since it can be referred to 
as a delineated event (Patton, 2002; Charles and 
Merter, 2002). As mentioned by Yin (1994):
“In general, case studies are the preferred strategy 
when ‘how’ or ‘why’ questions are being posed, 
when the investigator has little control over 
events, and when the focus is on a contemporary 
phenomenon within some real-life context” (p.1).
The present research satisfies all of the 
aforementioned requirements for case studies:
1. It tells us why and how philosophy should be 

included in the Hong Kong secondary school 
mathematics curriculum.

2. It proposes several examples for how 
mathematics should be taught from a 
philosophical perspective. However, ordinary 
mathematics teachers might have their own 
methods, that is, teaching in a naturalistic 
setting. If this is the case, then this study does not 
overlook their teaching strategies (Chan, 2009).

3. It involves contemporary events rather 
than historical events since the method of 
teaching	 and	 learning	 the	 concept	 of	 infinity	
can be investigated and observed directly 
(Chan, 2009).

Empirical study

What is an empirical study? According to 
Goodwin, 2005, a study that adopts empirical 
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evidence is an empirical study; that is, it obtains 
knowledge by direct or indirect experience or 
observation. In scientific methods, “empirical” can 
describe a working hypothesis that can be tested 
through observation and experimentation. This 
evidence can be evaluated either qualitatively or 
quantitatively. The answer to empirical questions 
proposed by a researcher can be concluded from 
well-defined and justified collected testimony 
(Goodwin, 2005). A real-case scenario includes 
the following “empirical research cycle,” as 
suggested by A.D. de Groot:
1. Observation: Having well-collected and 

organized empirical facts that form the 
hypothesis requires collecting data through 
scientific	 observation	 or	 experimentation	
(Kosso, 2011). Observation can be performed 
qualitatively, whereby the existence or absence 
of a property is noted, or quantitatively, 
whereby a numerical value can be attached to 
the observed phenomenon (Kosso, 2011).

2. Induction: A hypothesis is formulated. Inductive 
reasoning is the process in which various 
premises are considered as providing strong 
proof about the truth of the conclusion (Copi 
et al., 2007). From a philosophical perspective, 
these premises suggest a truth without ensuring 
the conclusion (Audi, 1999). Thus, it is easy to 
transform general statements into an example.

3. Deduction: The consequences of the hypothesis 
as testable predictions can be determined. As 
opposed to inductive reasoning, deductive 
logic is the process of reasoning from one 
or more statements or premises such that a 
logical conclusion can be reached (Sternberg, 
2009). In deductive reasoning, general rules 
are applied over a closed domain of discourse, 
narrowing the range under consideration and 
thus reductively arriving at a conclusion.

4. Testing: The hypothesis is tested using the 
new empirical data. In general, an experiment 
is a procedure undertaken to refute, verify, 
or validate a hypothesis (Stohr-Hunt, 1996). 
Experiments attempt to identify causes and 
effects by showing the outcome when a factor 
is manipulated. There can be great variation 
in the goal and scale of experiments, but they 
all rely on repeatable procedures and logical 
analyses of the results (Stohr-Hunt,1996).

5. Evaluation: The test outcomes are evaluated. 
There is a set of standards that govern the 

systematic determination of a subject’s 
significance,	 merit,	 and	 worth	 (Staff,	 1995).	
Evaluation helps in decision-making processes 
across	different	fields,	such	as	in	organizations.	
Furthermore,	 it	 enables	 reflection	 and	
identification	of	future	change	(Staff,	1995).

Research design

The section highlights the basic structure of empirical 
research, which comprises observation, induction, 
deduction, testing, and evaluation. The research 
design for each category is described below:

Observation design

This study will recruit secondary school students 
by sending invitational letters to all day schools 
in Hong Kong. The research will last for one 
academic year (Lau, 2009). Participants will 
be students enrolled in primary years 1–6 and 
secondary years 1–5 and will be under the 
supervision of the teachers and principals. There 
will be class observations at the chosen schools 
to determine how teachers introduce the concept 
of infinity. The school visitation period will last 
for 1 year. Throughout this period, data will be 
regularly collected for research evaluation. The 
main purpose of the study is to discuss how 
teachers should introduce the concept of infinity 
to primary and secondary school students. Data 
will be obtained from school visits, during 
which students’ and teachers’ perceptions will 
be recorded. Deduction is top-down logic, while 
induction is bottom-up logic.[1-15]

Induction design

After school visits and class observations have 
been conducted, this study will test the following 
hypotheses to determine how students learn the 
concept of a limit:
H0: Most Hong Kong students do not fully 
understand the concept of a limit.
H1: Hong Kong students can understand the 
concept of limit.
In addition, another inductive hypothesis for 
students learning about “contradiction:”
H0: Most Hong Kong students show difficulties 
in applying the technique of contradiction to 
mathematical proofs.
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H1: Students can apply the technique of 
contradiction to mathematical proofs very well. 
The final hypothesis from the class observations 
of students’ intuition is as follows:
H0: There are always errors that exist in students’ 
intuition when they learn about things related to 
infinity.
H1: There are no errors that exist in students’ 
intuition when they learn about things related to 
infinity.

Deduction

D1: If students have difficulty understanding the 
concept of a limit, then they will struggle when 
trying to comprehend the idea of infinity.
D2: If students have difficulty applying the 
technique of proof by contradiction, then they will 
be unable to understand the concept of logicism in 
philosophy.
D3: If students intuitively make mistakes when 
learning about things related to infinity, then 
they may lack an understanding of in the relevant 
mathematical theory.

TESTING – QUASI-EXPERIMENTAL 
STUDY

To test the hypotheses, this study will use the 
quasi-experiment method. Specifically, the 
investigation of the students’ concept of infinity 
will be conducted using a computerized Taylor 
polynomial approximation study (Kidron and Tall, 
2014). The software MATHLAB will be used 
in this experiment. The aim is to determine the 
“convergence of sequence of functions visually 
considered as graphs that converge onto the limit 
function” (Kidron and Tall, 2014: p.1). “The 
approach offered in this study stimulated explicit 
discussion not only of the relationship between 
the potential infinity of the process and the actual 
infinity of the limit but also of the transition from the 
Taylor polynomials as approximations to a desired 
accuracy toward the formal definition of limit” 
(Kidron and Tall, 2014: p.1).[11-20] For example, 
one may expand a polynomial f(x) around “0” for 
sin(x) up to degree 5 as described below:
P5(x) = x – x3/3! + x5/5! +….
The error can be expressed as a function of x and 
c. Indeed, it is given by f(x) – P5(x), where the 
Lagrange remainder is:
(f(6)(c) x6)/6! for some c between 0 and x.

Therefore, the absolute value of the error can be 
plotted as follows:

In this quasi-experiment, the researcher will analyze 
how students can alter their understanding from a 
symbolic and embodied world to a formal definition 
of limit. The first group of students will be required 
to find a polynomial with a given degree.
Polynomials obtain the highest possible order of 
contact with a given function. Students will be 
guided in analyzing the process of convergence 
and describe what they have observed through 
dynamic graphical animation. Finally, they 
will be asked to translate dynamic pictures into 
analytical language. Hence, students can change 
the parameters and choose different functions 
to construct their own functions. For example, 
they can test the convergence of the Lagrange 
Remainder for different functions.
Simultaneously, another group of students 
will be involved in the approximation process 
following the original text of Euler (1988). 
They will use MATH-LAB for the “continued 
division procedure” to perform the calculation for 
function 1/(1-x), as stated by Euler. The aim of 
this experiment is to use MATH-LAB commands 
to carry out Euler’s algorithmic thinking. This 
will allow insight into Euler’s “development of 
functions in infinite series.”
The final group of students will be a control group. 
They will be presented with the concept of a limit 
via traditional and formal instructional methods. 
In addition, questions and answers and whole 
class discussions will be employed in the control 
group (Narli, 2011).

EVALUATION

There will be a class discussion for participating 
students in which function sin(x) and Taylor 
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polynomial: Pn(x) = a0 + a1x + a2X
2 + a3x

3 +… 
+ anx

n are both known, as is computation error: 
f(x) - Pn(x). In addition to the class discussion, a 
written test will be administrated in an effort to 
analyze the personal conceptions of individual 
students (Kidron and Tall, 2014).[21-30]

Research data

There are two categories of research methods: 
Qualitative and quantitative. The selection of a 
method depends on the types of research questions. 
The aim of the methods is to construct knowledge, 
and they can be implemented in a mixed and 
complementary way (i.e., the mixed- method 
approach).
This study employs an inductive process for 
exploring issues and investigating phenomena 
related to teaching and learning the concept of 
infinity. Therefore, a qualitative method is chosen 
for this research. Quantitative data are included as 
the following:
1. There will be 180 students participating in the 

focus group discussions (10 within each of the 
three phases per grade and in a total of three 
schools).

2. There will be 36 teachers participating in the 
interviews (two within each of the three phases 
per grade and in a total of three schools).

3.	 There	will	be	field	notes	and	video	recordings	
taken in 18 class observations (one within 
each of three phases per grade in a total of 
three schools).

4. There will be open-ended questions and 
written tests administered after each class 
observation (out of a total of 540students).

Qualitative data analysis will be used for the 
examination of the open-ended questions, focus 
group discussions, interviews, field notes, and 
video recordings. In 1987, Strauss outlined 
the coding steps as open coding, axial coding, 
and writing memos to find the main themes. 
This study will investigate how philosophy 
education can support the teaching and learning 
of infinity.
Students’ written tests will be used to examine the 
concept of infinity after each class observation. 
This will enable the evaluation of the significance 
of philosophy education in normal lessons. As a 
result, the necessary alterations can be made to the 
present Hong Kong secondary school mathematics 
curriculum.

There are a total of three phases in this study: 
A development stage, a school visit stage, 
and a data analysis stage. In the development 
stage, invitational letters, experiments, and 
written tests will be developed and prepared 
for implementation. For the school visit stage, 
students from three different ranking schools in 
primary grades 1 to 6 and secondary grades 1 to 
5 will be interviewed and observed. In the data 
analysis stage, information will be qualitatively 
analyzed.
When questioning the validity and reliability 
of the above qualitative research, one may first 
refer to its internal and external validity (Yung, 
2011). In 1999, Huitt et al. defined internal 
validity as “the confidence in the change of a 
dependent variable which is caused by change 
in an independent variable.” External validity is 
considered the extent of to which a study’s results 
can be generalized. The present research is strong 
in its internal validity but weak in its external 
validity.
This is due to the goal of the study, which is to 
understand the phenomenon rather than trying to 
present a generalized result. In addition, only a 
limited number of people, situations, and events are 
included in the research because of constraints on 
time, labor, and resources. Detailed field notes and 
audio-visual recordings of the class observations 
and interviews will enhance the research reliability 
(Yung, 2011). After viewing the examples of 
teaching infinity through mathematical philosophy, 
one may ask what the outcomes and value of the 
current study will be.[31,32]

Difficulties students face when learning 
infinity

Struggles with the concept limit
As mentioned in the previous section, the 
definition of a limit is abstract. Most students may 
have difficulty understanding the concept of a 
limit (Swinyard and Larsen, 2012):
lim f (x) = L if for every ε > 0, there exists a δ> 0,
x →	a
Such that 0 < |x – a| <δ implies |f(x) – L| <ε
According to Fernandez in 2004, students are 
confused about the following:
i) What do ε and δ really represent?
ii) What the relationships between those 

variables and parameters are as described in 
the	definition?
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iii) Why does |x – a| need to be positive while |f(x) 
– L| can be either positive or negative?

1. The action of evaluating f at a single point x that is considered to be close to,
or even equal to, a.

2. The action of evaluating the function f at a few points, each successive point
closer to a than was the previous point.

3. Construction of a coordinated schema as follows.
  a. Interiorization of the action of Step 2 to construct a domain process in which

x approaches a.
  b. Construction of a range process in which y approaches L.
  c. Coordination of (a), (b) via f. That is, the function f is applied to the process

of x approaching a to obtain the process of f (x) approaching L.
4. Perform actions on the limit concept by talking about, for example, limits of

combinations of functions. In this way, the schema of Step 3 is encapsulated
to become an object.

5. Reconstruct the processes of Step 3(c) in terms of intervals and inequalities.
This is done by introducing numerical estimates of the closeness of approach,

In symbols, 0 < |x – a| < δ and | f (x) – L| < ε.
6. Apply a quantification schema to connect the reconstructed process of the

previous step to obtain the formal definition of limit.
7. A completed ε – δ conception applied to a specific situation.

The reason for students’ misconceptions is their 
struggles with experiencing the quantification 
of the definition of a limit (Cottrill et al., 1996; 
Dubinsky et al., 1988; Tall and Vinner, 1981). 
Cottrill, 1996, decomposed the concept of a limit 
and how the human brain might construct it, in 
other words, what students might construct during 
the process of trying to comprehend the concept 
of a limit (Swinyard and Larsen, 2012). Figure 3 
lists the ways to decompose the concept of a limit.
To conclude, it could be said that understanding 
mathematical concepts such as a limit is a 
sophisticated process. An individual might always 
struggle with the quantification of its ε and δ 
definitions. To address this problem, an individual 
may be able to learn this concept through graphical 
representation, numerical experimentation, or 
related theorems. Hence, students may “reinvent” 
a new definition of a limit to understand the 
concept more clearly, which, in turn, might help 
them overcome the complex cognitive barriers 
formed by the original definition.
1. The action of evaluating f at a single point x 

that is close to, or even equal to, a.
2. The action of evaluating function f at a few 

points, with each successive point becoming 
closer to a than the previous point was.

3. Construction of a coordinated schema as 
follows.

a) Interiorization of the action of Step 2 to 
construct a domain process in which x 
approaches.

b) Construction of a range process in which y 
approaches L.

c) Coordination of (a), (b) via f. That is, function 
f is applied to the process of x approaching a 
to obtain the process of f (x) approaching L.

4. Perform actions on the limit concept by talking 

about, for example, limits of combinations of 
functions. In this way, the schema of Step 3 is 
encapsulated to become an object.

5. Reconstruct the processes of Step 3(c) in 
terms of intervals and inequalities. This is 
done by introducing numerical estimates of 
the closeness of the approach in symbols, 0 < 
|x – a| <δ and | f (x) – L| <ε.

6.	 Apply	a	quantification	schema	to	connect	the	
reconstructed process of the previous step to 
obtain	the	formal	definition	of	a	limit.

7. A completed ε – δ conception applied to a 
specific	situation.

Mistakes in intuitively computed infinity
In the previous section, a gap was revealed between 
intuitive computation of the famous solid Gabriel’s 
trumpet and formal integration. Students usually 
make mistakes in intuitively computing infinity. 
How and why is there such a gap? To answer this 
question, one must first understand the results from 
the formal integration of Gabriel’s trumpet:
Volume of Gabriel’s trumpet: When one rotates 
the graph of function f(x) = 1/x around the x-axis 
and	computes	the	volume	between	1	and	∞n	one	
will have:

1

lim
^ 2

R

R x
π

→∞

 
 
 
∫

 1[x [ ]d ]R

R R
lim lim

x R
π π π

→∞ →∞
=

− −
= +

Gabriel trumpet generated using Math-lab 
(rotating about x-axis).
Clearly,	 the	 above	 limit	 converges	 to	 ∏o	 The	
cross-sectional	area	for	integration	is	∏/x2, where
R is a fixed value.

Surface area of Gabriel’s trumpet

1

2lim lim[log ] [log1]2
R

R R
R

x
ππ

→∞ →∞

 
= − 

 
∫

Note that the surface area of the small slice is 
larger than (2aner dx. Therefore, the total surface 
area	is	larger	than	the	above	limit	and	is	∞s
Formal computation tells us that it is impossible 
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to paint the surface area of Gabriel’s trumpet. 
Most students intuitively think that one can use a 
finite amount of paint. Wijeratne, 2015, suggests 
that this is the result of the intuitive rule “same 
A-same B.” In 1999, Stavy and Tirosh explained 
that if there are two equal systems with a certain 
quantity A but with another different quantity B, 
students often argue that the “same amount of A 
implying the same amount of B.” This finding 
shows that the alternative misconception comes 
from the above common, intuitive rule.
Therefore, it is teachers’ role in placing emphasis 
to students when the “same A-same B” rule should 
be applied appropriately.
“The differences between these two types of situations 
should be discussed, stressing the inapplicability 
of the intuitive rule in the second. This could help 
students to form the application boundaries of the 
intuitive rules. In addition, we recommend that 
students should be encouraged to criticize and test 
their own responses, relying on scientific, formal 
knowledge” (Stavy and Tirosh, 1999: p.64).

Puzzles in handling the proof-by-contradiction 
method
As mentioned, students may have difficulties 
in applying the proof-by-contradiction method. 
According to Antonini and Mariotti in 2008, there 
are three puzzles in this method:
1.	 The	 first	 puzzle	 is	 when	 to	 use	 proof	 by	

contradiction. Most mathematicians believe that 
there are two criteria for using the method: “(1) The 
given conditions are not able or not easy to be 
manipulated; and (2) the negation of conclusion 
reveal an obvious representation within a familiar 
system” (Lin and Lee, 2016:p. 4–443).

2. The second puzzle is how to connect the 
contradiction and the principal statement. Given 
principal statement p, one must give a direct 
proof to its negating (secondary) statement. 
The	 first	 sub-puzzle	 is	 how	 students	 should	
formulate the proof for negating statement q. 
After the proof of statement q, the conclusion 
constitutes a contradiction to q. Thus, principal 
statement p is correct. This means “if ~q 
then ~p” implies “if p then q” (Lin and Lee, 
2016:p. 4–443). Hence, the second sub-puzzle 
lies	in	how	students	should	link	the	final	proof	
of statement q to principal statement p.

3. The third puzzle is what should be done to 
treat impossible mathematical objects created 

during the proof of statement q. There is a need 
to discard these mathematical objects after the 
proof. Thus, one can use the adductive process 
for mobilizing explanatory hypotheses.

Teachers are required to fill the gap for students 
between the contradiction and what the statement 
must prove. One may conclude the following:
“If such indirect proofs are encouraged and 
handled informally, then when students study the 
topic more formally, teachers will be in a position 
to develop links between this informal language 
and the more formal indirect-proof structure.” 
(Thompson 1996, p.480)
After discussing several cognitive models 
regarding students’ learning in mathematical 
philosophy, this study has revealed that reasoning 
is a significant factor for students to achieve 
academic success in mathematics. Thus, there is a 
need to promote students’ focus on understanding 
mathematical proofs and definitions rather than 
only on performing numerical calculation.

CONCLUSION

Students’ understanding of mathematical proofs 
and definitions is essential in raising Hong Kong’s 
mathematical academic standards. Changes must 
be made to the teaching pedagogies of local 
education. At the same time, teachers should have 
their own ideas about how students might be able 
to learn abstract mathematical concepts. In doing 
so, teachers can provide the necessary support 
for pupils trying to comprehend those concepts, 
which, in turn, can lead to changes in students’ 
beliefs. This progress can then be analyzed 
through conceptual transformations, or “the kind 
of learning required when the new information 
to be learned comes in conflict with the learners’ 
prior knowledge is usually acquired on the basis 
of everyday experiences”
(Vosnadiou and Lieven, 2004, p. 445). There are 
four criteria for beliefs: Lived experience, belief 
rejection, belief replacement, and synthetic model 
(Rolka et al., 2007). In 1997, Appleton developed 
a model for describing and analyzing students’ 
learning:
1. The new information creates an apparent 

identical	fit	with	the	students	“present	ideas.”
2. The new information forms an approximate 

fit	with	 the	students’	existing	concept,	which	
seems to be related, but the details are unclear.

3. The new information is only acknowledged 
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without an explanation by the ideas attempted 
so	far.	This	is	known	as	an	incomplete	fit.

Similarly, teachers’ beliefs about mathematics are 
as follows (Liljedhal, 2006):
1. Toolbox: Mathematics is about numbers and 

rules.
2. System: Mathematics is the science of pattern 

and structure.
3. Utility: Mathematics is all around us. We live 

in a quantitative society.
4. Process: Mathematics is a construction of 

understanding that individuals build.
Gradually, teachers have changed from system and 
utility points of view to a process standpoint. This 
evolution can be interpreted as “unlearning the 
process of learning to teach mathematics better” 
(Liljedhal, 2006: p.327).
From the above, it is apparent that the teacher’s 
role has changed from a sage on the stage to a guide 
on the side (Davis, 2001). In other words, teachers 
have transformed to now act as facilitators. 
Indeed, what is said to be the best relationship 
between teaching and learning is (Siu, 2014: p.4) 
as follows:
“Teaching and learning help each other;” as it is 
said in the Charge to Yueh, “Teaching is half of 
learning.”

Remarks

This author notes that one may further extend 
the present Taylor series from the infinitesimal 
view (Stewart and David, 2015). The idea comes 
from the “arbitrarily small” quantities dx and dy 
in the historical development of calculus. The 

prescribed Taylor series in this paper can be 
handled in the field R((x)) consisting of power 
series with a finite number of negative powers. 
However, if there is a sequence a1, a2,…, an where 
a function a: N —> R with a(n) = an, what would 
be the appropriate extension field? Obviously, 
this would be no problem for Leibniz, since 
his work fits well with infinitesimals. Thus, to 
fulfill sequence a(n), one must extend the normal 
mathematical analysis into non-standard analysis. 
It extends the real numbers R into R* (the super 
ordered field), which is called the hyperreals 
(Stewart and Tall, 2015). This author believes that 
it is one of the structures that stays between natural 
and real numbers because R* is the infinitesimal 
treatment of real numbers but does not belong to 
the complex number.
To conclude, the full picture of number systems is 
depicted in the following table:
Countable Sets Natural numbers, integers, rational numbers, 

constructible numbers, algebraic numbers, 
periods,	computable	numbers,	definable	real	
numbers, arithmetical numbers, Gaussian 
integers

Division Algebras Real numbers, complex numbers, quaternions, 
octonions

Split Composition 
Algebras

Over R split complex numbers, split 
quaternions, split octonions over C bi-complex 
numbers, bi-quaternions, bi-octonions

Other Hypercomplex Dual numbers, dual quaternions, hyperbolic 
quaternions, sedenions, split- bi-quaternions, 
multicomplex numbers

Other Types Cardinal numbers, irrational numbers, 
fuzzy numbers, hyper-real numbers,
Levi-Civita field, surreal numbers, 
transcendental numbers, ordinal numbers,
p-acid numbers, super-natural numbers, 
super-real numbers

The figure below shows part of the structure of the 
number system (from Google Images):
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The Conceptual Framework of the Present Study 
(Yang, 1989).
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