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ABSTRACT
The continuum hypothesis has been unsolved for hundreds of years. In other words, can I answer it 
completely? By refuting the culturally responsible continuum (Lam, 2014), one can link the problem to the 
mathematical continuum, and it is possible to disproof the continuum hypothesis (Lam, 2018). To go ahead 
a step, one may extend our mathematical system (by employing a more powerful set theory) and solve the 
continuum problem by three conditional cases. This event is similar to the status cases in the discriminant 
of solving a quadratic equation. Hence, my proposed algorithmic flowchart can best settle and depict the 
problem. From the above, one can further conclude that when people extend mathematics (like set theory 
— ZFC) into new systems (such as Force Axioms), experts can solve important mathematical problems 
(CH). Indeed, there are different types of such mathematical systems, similar to ancient mathematical 
notation. Hence, different cultures have different ways of representation, which is similar to a Chinese 
saying: “different villages have different laws.” However, the primary purpose of mathematical notation 
was initially to remember and communicate. This event indicates that the basic purpose of developing any 
new mathematical system is to help solve a natural phenomenon in our universe.
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INTRODUCTION

In discussing the contradiction of the continuum 
hypothesis, set theory can be used as a reference. This 
event is because the origin of set theory is derived 
from Cantor’s work in the number and its conceptual 
set properties. The result introduces our well-known 
continuum hypothesis problem. However, there are 
some alternatives of disproof; one is a master’s thesis 
written by this author, which applies a version of the 
cultural component continuum (mathematics has a 
strong relationship with culture and thus has a close 
connection with the continuum hypothesis). The 
other disproof can be demonstrated by me through 
the use of mathematical analysis. I will outline both 
types of disproof’s in the following sections.

A Philosophical Issue in Our Number Line System

By employing mathematical analysis, the continuum 
hypothesis can be disproved with the following:

First, theorems in number theories should be used to 
approximate natural and real numbers in different 
sequences (Niven., etc, 1990 Chapter 6–7) 
through Farey sequences and fractions together 
with Diophantine approximation for real numbers. 
The sequence of the continued fraction will 
finally converge to any irrational number. This is 
because, from the Euclidean algorithm, one can 
clearly see that every term of the infinite series 
must be smaller than the previous one (Niven., etc, 
p. 326). In fact, the sequences of different rational 
and irrational numbers can then form different 
infinite series (N.B. the above approximation is 
completely different from the Mandelbrot set). 
This is because one has only applied number 
theories to approximate real numbers, but the “M” 
set is a fractal geometry of nature to describe non-
ordinary straight lines and smooth arcs.
Conversely, in this case, every former term is 
smaller than the next. Using a suitable substation, 
one may turn these series into power series. 
Simultaneously, an analytic function can always 
be representable by a power series, which is 
required for the infinite Taylor series. Thus, one 
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can find an analytic function f(z) together with the 
Taylor series error term. It should also be noted 
that the Laurent series is only an extension of the 
Taylor series, which covers negative power.
Furthermore, it may be suggested to find the 
expansion’s residue through complex residue 
theorems (Wunsch, 199).[1] In addition, the residue 
of the Laurent series can be used to evaluate many 
types of integrals. This implies that it is possible 
to completely evaluate each approximation 
series’ cardinality. Indeed, all numbers share a 
commonality: any number can be approximated 
by a best fitted fractional number. Hence, the 
continuum hypothesis problem questions whether 
there is a cardinality between natural and real 
numbers, which will be disproved in this paper. 
If there were structures, each with different 
cardinalities laying between natural and real 
numbers, as well as the stepwise that moving up-
ward with diverse properties, there will not be a 
(super) common numerical thing - the fractional 
approximation (in form of rational numbers) for 
expressing all numbers. In fact, it is only a potential 
infinity and can be expressed in a rational form, yet 
it diverts from real numbers. Hence, a contradiction 
will occur (although an integer works as a subset 
of a real number ℝ, it has additional properties 
that are more than those of ℝ. Thus, ℝ and ℝ have 
diverse or different properties, which contradicts 
the fact that they can both be expressed as a (super) 
common numerical thing — the use of fractional 
approximation in forms of rational numbers.) 
The aforementioned method is only a proposed 
outline of disproof, applying pure mathematical 
and complex analysis together with number 
theories. In such case, Gödel’s incompleteness 
theorem will not be appropriated to the continuum 
hypothesis problem (the case of surreal numbers 
can be referenced to establish a new set of numbers 
which is made up of the aforementioned fractional 
approximation numbers). Simultaneously, the real 
numbers can be eliminated. It is worth mentioning 
that each irrational number can be sandwiched by 
two rational numbers. In such a case, the number 
system will then be modified, containing only 
fractions and without the set real number. However, 
this act may violate the well-ordering principle, 
which states as the following:
“Every non-empty set of positive integers must 
contain the least element.” (Tom, 1976)
That is, the set of integers must contain a well-
ordered subset named natural numbers. That said, 

it can be shown that there are no smallest positive 
fractional numbers. Thus, the well-ordering 
principle, as well as the natural number, cannot 
be guaranteed (from some perspective, this may 
even induce a contradiction as the assurance of 
the least element in a non-empty positive integer 
set with the fact that there are no smallest positive 
fractional numbers). In which case, the problem 
becomes a philosophical discussion or an open-
ended question without an absolute answer. 
This implies that our number line system needs 
to be amended or modified to eliminate the 
aforementioned controversial puzzle.
N.B. Irrational (or real) numbers may be 
approximated by the method of continued 
fraction. Indeed, one may find the best fitted 
rational approximation or the Diophantine and 
Padé approximants for the converged case while 
the divergent case can be solved by optimization 
method. However, the computational (and 
numerical) approximation and optimization 
method to find the best rational approximation are 
obviously both out of the scope or the focus of the 
present paper in solving the continuum hypothesis.

A Disproof of the Cultural Competent 
Continuum

There is also a similar disproof to the cultural 
component continuum. A study by this author 
found that children tend to only focus on their 
passions during their free time at home. The fact 
is, without parental supervision, the boy tends 
to enjoy playing computer games, while the girl 
prefers to chat with each other (Lam, 2014). 
However, both excessive computer games and 
chatting are likely to have adverse effects on 
academic results. Thus, parents must implement 
stronger measures to monitor their children’s ICT 
usage at home. In some cases, children respond 
negatively to these measures, which can lead 
to serious conflict. Under these circumstances, 
professional intervention (such as a social worker) 
might be necessary. These conditions allow 
consequence behavior to be studied in detail. 
What would be the best method to solve this 
type of behavior? The answer might be to allow 
“passionate-learning.” This consists of a well-
balanced lifestyle, effective study methods, and a 
strong parent-child relationship. Hence, children 
would be able to study in an enjoyable and relaxing 
environment. Furthermore, parents should be 
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educated about mediation philosophy (well-
balanced monitoring) together with maintaining a 
healthy school-family balance. Although cultural 
differences exist between countries, ICT education 
has common values. These values include the 
need of parental education (changing parents’ 
attitude toward handling ICT requests from their 
children by mediating the use of messaging 
platforms for non-educational purposes); good use 
of child psychology (enforce well-accepted ICT 
usage policies to establish a passion for learning 
using educational software); and having a better 
educational philosophy (how to educate children 
about ICT usage at home — avoiding pornography 
during Internet searches). Common values in ICT 
education must exist in all cultures. The cultural 
competence continuum will be valid if these 
common values do not exist. More specifically, 
the cultural continuum model is disproved as it 
assumes that individuals are cognizant of a range 
of behavior due to ethnic diversity. That said, 
this author believes that ICT education shares 
common values as a consequence of (humanized) 
domino behavior. It is thus independent of 
diverse cultures or intra-societal differences. This 
clearly contradicts the prescribed model. One 
may employ an algorithmic method for it, just 
like the three cases of discriminant in solving a 
quadratic equation. In conclusion, if the common 
values for ICT education are true, the continuum 
becomes invalid and is thus independent of 
culture. Otherwise, diverse cultures imply cultural 
continuum.

LITERATURE REVIEW – A HISTORY OF 
THE CONTINUUM PROBLEM

The origin of the continuum problem may have 
stemmed from ancient Greece, where scholars 
were interested in understanding the smallest 
components of matter. They argued the concept 
of “infinity,” which has two different modern 
meanings:
1. The limiting values of a converging series or 

so-called “actual infinity”
2. The concept of infinity, referred to as “potential 

infinity”, is not an exact numerical value or 
merely an approximation.

For example, 0.333333… is equivalent to 1/3, 
where the former (0.33333…) is a potential infinity 
with infinite decimal places — a group with an 
isolated portion of numbers to represent it; while 

the latter is only a fractional approximation in 
form of rational numbers. More specifically, it is a 
process that continues to extend within any stage, 
remaining finite (Stewart, 2017).[2] That said, if 
one considers the infinite sum of the following 
sequences: 1/2 + 1/4 + 1/8 +… which has a limiting 
value equal to one; for instance, there is something 
infinite that exists as a completed object (Stewart, 
2017),[2] which is clearly infinity. The above two 
examples show the difference between these 
infinities, and cannot be mixed together whenever 
applying the concept of mathematical infinity.
From the perspective of the ancient Greeks, there 
were various repeated processes that repeatedly 
worked when dividing daily matter (Tall, 2013).[3] 
This was when the concept of potential infinity 
was conceived. The ancient Greeks believed that 
actual infinity was not a process in time, rather, 
it was an infinity that existed at any time (it had 
an infinite amount of elements). Specifically, the 
process of potential infinity is infinite but its value 
is finite at any specific time (it contains many 
finite elements).
Historically, the motivation that inspired Georg 
Cantor to develop set theory and point-set topology 
came from the following question:
“Can a function have more than one represented 
by a trigonometric series?” (Srivastava, 2014)[4]

Before Cantor (1845–1918), there were at least 
two defects in mathematics:
i. Mathematicians had difficulties in formulating 

precise definitions and they were often 
governed by intuition or geometric pictures. 
They usually treated real numbers as geometric 
points on a line

ii. They only considered those functions with 
analytic expressions (Sirvastava, 2014); 
Cantor’s work was significant as it led to the 
foundation of mathematics and built upon the 
ancient Greek’s rigor and precise mathematical 
ideas. In addition, the author would like to 
provide some new thoughts and possibilities 
regarding this subject.

According to Ferreirs, 2004, in 1870, Cantor was 
able to provide a simplified proof, as follows:
“Whenever there is a real function, one can always 
find a unique representation by Fourier series.”
Two years later, Cantor generalized a unique 
representation result, which allows an infinite 
amount of points for both the divergent and in-
coincide function. He also introduced the concept 
of derived sets (exceptional sets of point P). 
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Derived sets later became a very important tool 
for both theories of real functions and integration 
(Ferreirs, 2004). Cantor also showed that there are 
some infinite sets of points which are not relevant 
to the representation question of real functions. 
In 1874, he proved that algebraic numbers are 
denumerable (one-to-one correspondence with 
natural numbers), while the set of real numbers 
are non-denumerable. In addition, the set of 
derived points is also denumerable. In this case, 
Cantor observed that there was a link between his 
results from 1874 and the continuum (Ferreirs, 
2004). This indicated that he was interested in 
“the Labyrinth of infinity and the continuum.”
The rest of Cantor’s theory has been described in 
Lam, 2016. To simplify the continuum problem, 
David Hilbert illustrated the theory of infinite 
numbers in a lecture in 1924 (Stewart, 2014; 
James, 2017) as follows:
Suppose there is a hotel with an infinite number 
of rooms, and all rooms have been fully occupied. 
When a new guest arrives, the manager requests 
all other guests to move to another room with one 
number greater. As a result, all guests now have a 
room and the newcomer occupies Room 1.

The above figure demonstrates all hotel guests 
shift one to larger, room 1 is free (one may compare 
with the case 0 א = 1 + 0 א)
Later, a coach arrives with an infinite number 
passenger. The hotel manager attempts to solve 
this problem by:
Asking the original guests shift to those rooms 
with even numbers, while the coach passengers 
are assigned to rooms with odd numbers.
The above way in handling an additional infinite 
bus load of people can be compared with the case 
0 א = 0 א + 0 א

Similarly, when there is infinite-infinity of 
numerous coaches arrived, the manager decided 
to arrange as following:

This is the manager’s diagonal order for the above 
coaches (if one compares with the case of 0 א X 0 א 
(0 א =
To summarize, the above is only a brief history 
in the discovery of infinity. Practically, the Grand 
Hotel story is an infinite nesting and may have a 
sense of formalism. In the following section, we 
shall continue to discuss the continuum hypothesis 
problem in greater detail. A further discussion 
regarding its relation to Gödel’s incompleteness 
theorem is stated below.

Comments on Gödel’s Incompleteness 
Theorems

When discussing the mathematical continuum 
hypothesis, it is common to refer to Gödel’s 
incompleteness theorems. This is because the 
theorems explain that the hypothesis is independent 
(undecidable) of ZFC (Zermelo–Fraenkel set 
theory with the axiom of choice). The theorems 
also mention:
It is always true that either incompleteness or 
inconsistency exist in every non-trivial formal 
system. This implies:
1. Under a certain set of axioms, there are always 

questions that cannot be answered
2. A set of axioms is only consistent under the 

application of another group of axioms.
Although Gödel’s incompleteness theorems seem 
to be widely applied — especially in mathematics 
— there are still comments that must be addressed:
1. The theorems violate the axiom of choice since 

he supposed that mathematics is a constructive 
one; however, lack of such axioms may 
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suggest there would be no independent basis 
for a vector space

2. The Law of Excluded Middle will also 
be invalid. This implies that the Law of 
Non- Contradiction cannot be true. As a result, 
most of the classical logic becomes false. This 
is because the Law states that “a statement 
can only be either true or false,” but Gödel 
believed that there should also be a case of 
undecidable.

In fact, Gödel first used:
“this statement is not provable,” instead of 
classical logic:
“this statement is false” for the first incompleteness 
theorem.
The prescribed case is similar what this author 
has mentioned before (Lam, 2016) in the “liar 
paradox.” That said, the impossibility of replacing 
the latter statement with the former was discovered 
because one cannot represent:
“Q is the Gödel number of a false formula,” as 
a formula of arithmetic; The result is known as 
Tarski’s undefinability theorem Finally, George 
Boolos used the Berry paradox for sketching 
an alternative proof to the first incompleteness 
theorem.
Indeed, Gödel’s proposal on the theories of 
incompleteness was based on Platonism. There 
were once philosophers such as Wittgenstein 
who worked against him (anti-Platonists). For 
instance, Wittgenstein wrote the Tractatus logico-
philosophicus to challenge Gödel. Another well-
known example is:
“Let us suppose I prove the unprovability (in 
Russell’s system) of P; then by this proof, I have 
proved P. Now if this proof were one in Russell’s 
system — I should, in this case, have proved 
at once that it belonged and did not belong to 
Russell’s system. That is what comes of making 
up such sentences. But there is a contradiction 
here!” (Berto, 2009, p192).
However, Wittgenstein disliked formalization 
and as a result posed the following statement: 
“The curse of the invasion of mathematics by 
mathematical logic is that now any proposition 
can be represented in a mathematical symbolism, 
and this makes us feel obliged to understand it. 
Although of course, this method of writing is 
nothing but the translation of vague ordinary 
prose” (Berto, 2009, p.202).
The significance of the above statements is that it 
contributes to philosophers and logicians looking 

for an “ideal language” (Berto, 2009). In brief, 
Wittgenstein’s work suggested that there are no 
meta-mathematics, and eventually, our arithmetic 
can be inconsistent (Berto, 2009). Furthermore, if 
one assumes the proof relation of naive arithmetic 
is recursive, the argument will cause a challenge 
of Gödel’s standard perspective and hence his 
results. As such, whether Gödel is correct or not 
primarily depends on certain philosophical views 
— whether he or she is a follower of Platonism 
or not. Finally, there are always comments to 
be made on Gödel’s incompleteness theorems. 
One might even imagine the chance of another 
cardinal between natural number and real number 
under an anti-Platonism view. As a result, one 
might continue to refine them and discover more 
cardinals. Similarly, the issue of extending a new 
model by exploring new axioms has been included 
in the following algorithmic flowchart diagram. It 
is hoped that when old axioms and set existence 
become invalid, one may continue to refine the 
process of cardinals.

MAIN RESULTS: AN ALGORITHMIC 
FLOWCHART THAT SOLVES THE 
CONTINUUM HYPOTHESIS

While the continuum hypothesis problem is well 
known, most people believe that it was solved in 
the 1970s. But is this really the case? Up until 
now, there has been a great deal of discussion and 
proofs regarding the problem. With reference to 
the tower of transfinite mathematics (Olsen & 
Naschie, 2011), this author has tried to develop 
an algorithmic flowchart that transforms and 
summarizes the crucial stages of solving the 
continuum hypothesis. The author also hopes that 
the flowchart will be of assistance to future studies. 
Initially, one begins by setting ℝj (where j = 0, i=1) 
which equal to the first ordinal or cardinal (i.e., 
the set of the natural number and C (or ℝi) equals 
to the cardinal of R (i.e., the set of real number).
The algorithm then attempts to refine those ordinals 
beyond according to the axioms of ZF. By checking 
whether the ordinals violate the axioms of ZF, one 
extends to a new model by exploring new axioms. 
The following step is designed to find those 
immediate cardinals/ordinals. Simultaneously, 
the result meets with the false output of ZF axiom 
violation. This checks whether the existence of 
the set is right or wrong. If false, the algorithm 
returns to refining the ordinals beyond N. If true, 
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then Cohen’s forcing extension is applied to 
find large inaccessible cardinals. The procedure 
continues until “0=1” or its equivalent cardinal is 
discovered. The whole process then terminates or 
returns to finding inaccessible cardinals.
Simply put, the algorithmic flowchart will have parts 
to check, search, and classify in four main stages:
1. Ordinals between natural and real numbers
2. Cardinals/Ordinals between real numbers and 

(start of large cardinals κ = ℝk
3. Cardinals after κ = ℝk until “0 = 1” or its 

equivalent cardinal
4. Termination status – consistency collapses.

DISCUSSION OF THE RESULTS

In this section, this author will first discuss the 
following mathematical terms together with my 
previous algorithmic results:

Ordinal Numbers

Every finite well-ordered set is isomorphic to 
a unique natural number. An ordinal number is 
a well-ordered set a, such that for each element 
“ξ” ∈ a, X(ξ) = a where X(ξ) is the segment of 
elements of set a preceding “ξ”.
In other words, X(ξ) = { x ∈ a: x <ξ} or
0 = Ø; 1 = {Ø} = {0}; 2 = {Ø, {Ø}} = {0,1};….;n 
= {0, 1, 2,… n–1}
In addition, if one denotes ω as the well-ordered 
set of all natural numbers; then ω is obviously an 
ordinal number. Consider the set ω+ = ω ∪{ω} 
together with the following order relation for ω+:
For any two elements y and z of ω, y ≤ z in ωiff 
y≤ z and y <ω.
ω+ is an ordinal number. This is because if ξ ∈ ω+, 
then it is either ξ ∈ ω or ξ = ω. In both cases, one 
will have ξ = X(ξ). Thus, we have (ω+)+, ((ω+)+)+ 
of ordinal numbers.
The refining process of ordinal ω, ω + 1, ω + 2… 
will run until it meets ω + ω or ω x 2: The second 
ordinal besides the first ordinal (cardinal) of the 
natural number or ℝ0.
The procedure continues with ω x 3, ω x 4… until 
an infinitely large number epsilon zero. It should 
be noted that there are epsilon numbers that are the 
fixed points of an exponential map that satisfies 
the equation:

ε = ωε

They are ordinals, as well as a collection of 
transfinite numbers.

The least of such an ordinal is ε0 where
ε0 = (ωω)ω… = sup {ω, ωω, (ωω)ω, ((ωω)ω)ω,…}
The process views this as an immediate status 
because it can continue infinitely. One may not 
even be able to fit them into an infinite set.
When a collection of all the countable ordinal 
numbers forms a set, it can be called ω1. Obviously, 
ω1 is an ordinal number that is larger than all of the 
countable set, and is thus uncountable. Hence, the 
definition of ℵ1 implies that there is no cardinal 
number between ℵ0 and ℵ1 if one assumes the 
axiom of choice is not applicable.

Cardinal Numbers

Every set can be equipotent to a unique cardinal 
number. Equipotent means that a bijective 
mapping existing between two sets; for example, 
set A and set B.
Suppose α is an ordinary number, then the power 
set P (α) is a set with the following properties 
(Leung & Chen, 1970):
• α is equipotent to a proper subset of P (α), and
• α is not equipotent to P (α)
Suppose π is the ordinal number of the well-
ordered set P (α), for the set B = {B∈π:} where 
means two sets are equipotent.
When there is another ordinal number r with the 
property that, one will have γ<π and hence γ∈π.
On the contrary, if γ>π and, then P (α) is 
equipotent to a subset of α but P (α) contains 
2P (α) elements of α. One may conclude that 
set B is the set of all ordinal numbers that are 
equipotent to α. Thus, a cardinal number is an 
ordinal number such that α≤B for all ordinal 
numbers B which are equipotent to α. Or α is the 
least element of the set of all ordinal numbers 
that are equipotent to it.
As shown above, it can be found that ℝ0, the 
cardinal of the natural number, is the least 
countable infinite ordinal (/cardinal) number ω. If 
the refining process is continued, it can be found 
that there are indeed some countable ordinal 
numbers beyond ω (/ℝ0). They are ω + 1, ω + 2,…, 
ω x 2,ε0 and so on, in-between ℝ1, the cardinal of 
the real number — the least infinite uncountable 
cardinal. As such, the process terminates and 
begins searching for new axioms together with 
new models for those inaccessible cardinals, since 
the existence of the set is violated (from countable 
to uncountable), and hence questioned. This 
author is of the opinion that:
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a. Ordinals are actually well-ordered, but there 
is no largest countable ordinal after ω1 and 
in front of ℝ1, since these ordinals becoming 
infinitely larger

b. Internally, each ordinal can be presented 
graphically in terms of a “matchstick.” The 
ordinal ω2 connected with each matchstick 
starts from the set of ordinals formed by w. 
m+n where m and n are natural numbers. The 
resulting plotted graph is similar to resonance 
damping in harmonic motion

c. It should be noted that ℵ1 = 2ℵ0 which is 
independent (undecidable) in axiom set theory. 
This is known as the continuum hypothesis 
problem. This can go a step further (by 
transfinite induction), in that אα+1 = 2אα. This 
is also known as the generalized continuum 
hypothesis problem. It can be solved by using a 
new model to explore new axioms. A technique 
called “forcing” was developed by Cohen and 
established a model of ZFC, where 2ℵ0 = ℵ2.

Class

With set theory (which depends on different 
contextual foundations), a class is defined as a 
collection of sets in which all its members always 
unambiguously share a common property. In 
Zermelo-Fraenkel (ZF) set theory, for example, 
class is informal; while in von Neumann-Bernays-
Godel set theory, the definition is concerning 
those entities that are not members of another 
entity. In ZF set theory, there are two examples: 
The equivalent class of sets and the equipotent 
class of sets (Leung, 1970).
According to Cameron, 1998, p. 45, the ordinal 
numbers do not form a set, but rather an ordered 
class. If one follows the steps in Zermelo’s 
hierarchy (p. 48), a V can be constructed such that 
it is the ‘class’ of all sets and “On” -- the class of 
all ordinal numbers, i.e.,
V = ∪α∈On Vα where Vα is the set of all sets 
constructed at stage α (or isomorphic to an ordinal 
number α)
Furthermore, Vα ⊆Vβ for α<β (Cameron, 1998);
Hence, using Zermelo’s construction, one can 
explain why a collection of all ordinals is actually 
a class, as well as establish a progressively larger 
hierarchy of ordered sets. It is worth noting that 
the definition of a class may result in Russell’s 
paradox:

• When R contains itself, by definition, R must 
be a set that is not a member of itself — which 
would obviously be a contradiction

• When R does not contain itself, then R is one 
of the sets that must not be a member of itself 
— also a contradiction.

To solve the problem, one of the following 
methods can be used:
Method I: Alter the logical language or first 
order logic, such that the axioms of set theory are 
expressed in another way. Russell was successful 
in the development of this type of theory-altered 
logical language. However, he faced a problem 
when defining arithmetic through pure logic — 
later shown to be incomplete by Gödel. Because 
Pearno arithmetic is impossible to formalize, this 
author believes the approach is not feasible and, as 
such, does not recommend it.
Method II: Alter the axiom of set theory, to retain 
the logical language expressed. The paradox will 
only be resolved by allowing the construction of 
subsets, such that {x∈z: o(x)}; i.e., there is not a 
set containing all sets, which is a useful result. This 
approach may be the most suitable means of solving 
the defect (of proper class) arising from Zermelo’s 
construction. This author proposes adding new 
axioms when refining the previously violating ZF 
axioms that occur in the algorithmic flowchart 
instead of using higher order logic etc. In addition, 
first order logic or predicate logic is different from 
propositional logic in that it has quantifiers such as 
the symbol ∀. This can be viewed as an extension 
of traditional proposition logic.
In brief, the issue over the size of a set can be 
resolved if a classing approach is employed. Class 
can prevent an oversized expanding set, which, in 
turn, leads to Russell’s paradox. In such an event, 
Zermelo’s construction highlights the inaccessible 
cardinals of transfinite mathematics (Olsen & 
Naschie, 2011).

Inaccessible Cardinals

According to Cameron (1998) a cardinal α is 
inaccessible when the following three conditions 
are true simultaneously:
1. α>ℝ0
2. For any cardinal λ <α, we have 2 λ<α
3. The union of fewer than α ordinals, each 

smaller than α, is smaller than α.
When the size of a set is too large, such that the 
existence of the set is questionable, the concept 
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of class, as explained in section 3, should be 
applied. Hence, larger inaccessible cardinals 
can be found using the technique developed by 
Cohen in 1963 of forcing (extension). If κ – is 
a cardinal of uncountable cofinality, one will be 
able to find a forcing extension, such that 2ℝ0 = κ. 
This author’s algorithmic process is expected to 
continually search for all of the large cardinals 
until one terminates at the condition “0” = “1” or 
its equivalent cardinal. The results of obtaining 
inaccessible cardinals can be achieved by using the 
method of forcing extension (Cohen, 1963), since 
the consistency will break down for those cardinals 
which are larger than the Reinhardt cardinal. In 
each of the above cases, the algorithmic approach 
to the continuum hypothesis will list all of the 
feasible ordinals, together with the immediate 
cardinals, until the largest one which may lead 
to collapse in consistency when the refining keep 
goes on. We shall proceed to another part.

Gödel’s constructible sets
The relative consistency of continuum hypothesis 
(CH) with respect to the Zermelo-Frankel set 
theory (ZF) with the axiom of choice (the first half 
of the continuum hypothesis problem) has been 
proved by Godel. That is
If ZF(C) is consistent, then ZFC + CH is consistent 
(where C means axioms of choice)
or
If ZF(C) is consistent, then ZFC ⊬¬CH.
Gödel showed that for any set-theoretic universe 
U2, when fulfilling the axioms of Zermelo-Frankel 
set theory, it should contain a sub-universe L ⊆ 
U called “the universe of constructible sets.” The 
sub-universe fulfills the axiom of Zermelo-Frankel 
set theory, together with the axiom of choice and 
the generalized continuum hypothesis.

Cohen’s forcing extension method
To solve the second half of the continuum hypothesis 
problem, Cohen introduced a forcing method, 
in which a set-theoretic universe is expected to 
be extended by adding new subsets to infinite 
sets. These sets have already existed in the initial 
universe. When one attempts to review history, the 
first instance of applying forcing, such that there 
are sufficient additional (many) new subsets of ω, 
are known as Cohen real’s. Thus, the result is the 
cardinality of the power-set of ω (in the extended 
universe) jumped to at least ℝ2. Therefore, Cohen 

concluded the consistency of ¬CH, relative to the 
axioms of set theory. If ZF(C) is consistent, then 
ZFC + ¬CH is also consistent. Hence, Hilbert’s 
continuum hypothesis problem was solved.[5-9]

Category Theory

There are, however, defects in Cohen’s method for 
finding large cardinals. One does not need to be 
concerned about a universe of sets, since there is 
a lack of understanding regarding the cardinals’ 
sequence. What is important though is the operations 
required to construct the sets. Mathematical practice 
requires a unique universe of discourse. This 
contradicts that category theory requires several 
levels of universes, which competes with Cohen’s 
perspective of the universe. Indeed, when dealing 
with higher and higher levels of classes, one will 
study increasingly larger categories. The simplest 
means of handling the problem is using the Tarski-
Grothendieck set theory. Modern mathematicians 
work as though there is only one universe of 
discourse. They consider the axiomatization ZF + a 
which characterizes “the particular” universe of 
(discourse), where a is a proposition talking about 
the inner structure of the universe. By definition, 
a universe (in set theory, type theory, category 
theory, and the foundations of mathematics) is a 
collection of entities that one wants to consider in 
a given situation. Philosophically, it is a domain of 
discourse. Thus, as an alternative, category theory 
— or even a Grothendieck universe — will be used 
when dealing with increasingly higher levels of 
classes.

Model Theory

This is the study of mathematical structures, such 
as groups, fields, graphs, and the universes of set 
theory, using mathematical logic and a formal 
language. Model theory can be used with regard to 
the continuum hypothesis problem to investigate 
the structure of large cardinals or even exploit its 
topological hierarchy. Indeed, one will discover 
that there are categories such as strongly compact 
cardinals, super-compact cardinals, and extendible 
cardinals in the large cardinalities. In other words, 
there are meeting points between topology and 
model theory on p and t (Malliaris & Shelah, 2013).
Inner model: In 2007, mathematicians discovered 
that there is a separable space which is an uncountably 
closed discrete subset that satisfies a certain relative 
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version of countable para-compactness. This showed 
the existence of inner models with measurable 
cardinals (Ahmed, 2013).[10-14]

Outer model: Due to unsuccessfully obtaining 
larger cardinals — other than the Woodin cardinal 
— mathematicians tackled the problem from 
another direction and acquired L-like properties in 
a forcing extension to preserve the large cardinals. 
By doing so, it was possible to handle arbitrarily 
large cardinals (Holy, 2013).

Towards Deep Inconsistency

Assuming that the inconsistency with the axiom 
of choice works with the Zermelo-Frankel set 
theory, a hierarchy can be constructed. Similar to 
Reinhardt’s cardinal, there is Berkeley’s cardinal. 
If one assumes the extendibility of Berkeley’s 
cardinal (BC), then the HOD (Hereditarily Ordinal 
Definable sets) conjecture appears. If this is true, 
then it implies a deep inconsistency. Increasingly 
stronger principles can be obtained through the 
folding of more and more axioms of choice (AC) 
and by establishing the following hierarchy:
1. ZF + BC + cof(δ 0) = ω
2. ZF + BC + DC + cof(δ 0) = ω1
3. ZF + BC + ω 1 -DC + cof(δ 0) = ω2
4. continue…
A hierarchy of increasingly stronger principles 
implies:
Phase_1: ZF + BC + cof(δ 0) >ω proves that there 
exists γ <δ 0 such that

Vγ |= “ZF + BC + cof(δ 0) = ω”.
This further means that ZF + BC + DC is inconsistent 
or has a moderately deep inconsistency.
PH_2: ZF + BC proves cof(δ 0) = δ 0 for PH_1 fails.
This implies the inconsistency of

ZF + “There is a limit club Berkeley cardinal”.
Or that there is a genuinely deep inconsistency.
From the above, HOD conjecture means towards a 
very deep inconsistency.
While the proposed algorithmic flowchart mainly 
follows a traditional continuum hypothesis solving 
method, it is true that there are other methods, 
such as model theory and category theory. 
Although there can be cardinals after “0 = 1,” this 
author ends the flowchart there, completing the 
algorithm. The flowchart can be further developed 
towards a very deep inconsistency. However, the 
very deep inconsistency problem must be solved 
using a new axiom (the wholeness axiom) of set 
theory (Corazza, 2012).

Axiom of Wholeness

The basic principle of the Wholeness Axiom is that 
it tries to omit the schema instances of j-formulas. 
Hence inconsistency due to Replacement Axiom 
is avoided. Then, the axiom of choice is allowed 
without any modifications to the replacement 
axiom. Indeed, the wholeness axioms are what 
we wanted the “ultimate axioms of infinity” with 
the boundary that is an inconsistency with ZFC. 
There is also an ultimate “L” which theoretically 
extends our orderly constructible sets of the world 
to include all large cardinals. Someone (includes 
this author) may believe that

Ultimate L implies V = HOD
However, this may suffix to the comment that 
rank-to-rank axioms may not consistent with this.
Once if we assume the consistency, the strength of 
wholeness axioms is strictly increasing according 
to its hierarchy.[15]

Or in other words,
j: Vλ VVλ

 witness a rank into rank cardinal, then 
we must have,

< Vλ, ∈, j> is a wholeness axiom’s model.
Therefore, if the wholeness axioms are consistent 
with ZFC, then this is consistent with

ZFC + V = HOD

CONCLUSION

The continuum hypothesis problem has existed for 
nearly a century and began with whether a function 
can be expressed by a trigonometric series. Using 

Diagram 1: An elementary flow chart of solving the 
continuum hypothesis problem
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the Fourier series, Cantor was then able to represent 
them. Finally, the expression question is related 
to the famous issue in continuum hypothesis. 
The limitation of this paper is that the flowchart 
assumes the classical continuum hypothesis results 
of Gödel and Cohen. The author’s algorithmic 
flowchart is intuitive and elementary suffixes to 
personal’s view and scholar studying. There is still 
a large amount of new research being done with 
regards to the continuum hypothesis problem, 
such as the development of inner and outer model 
programs. It is also clear that there are numerous 
ways of trying to solve the problem, with each 
one possibly having an alternative view of set 
theory, for example, New Foundations, conceived 
by Willard Van Orman Quine. As a result of the 
study, this author hopes that more people will 
be encouraged to look for creative solutions to 
the continuum hypothesis problem. Indeed, the 
algorithmic flowchart outlined in this study is just 
one of many tools that can be employed. From the 
physics point of view, continuum hypothesis is the 
study of the width and height of our universe. This 
is described in Naschie and Olse (2011). Hence, 
a computer program of the algorithmic flowchart 
will be extremely useful in solving the problem. 
Application of the continuum hypothesis usually 
focuses on the electromagnetic spread spectrum. 
This author suggests that energy harvesting would 
benefit the most, which will be discussed further 
in the next paper. Another application is the 
supercomputer project “MareNostrum” in Spain 
which stimulates the beginning of our universe 
and also other phenomena of it.

REFERENCES

1. Wunsch AD. Complex Variables with Applications. 
Boston: Pearson/Addison-Wesley; 1994.

2. Stewart I. Infinity: A Very Short Introduction. Oxford: 
Oxford University Press; 2017.

3. Tall DO. How Humans Learn to think Mathematically: 
Exploring the Three Worlds of Mathematics. 
Cambridge: Cambridge University Press; 2013.

4. Srivastava SM. How did Cantor discover set theory and 
topology? Resonance 2014;19:977-99.

5. Ahmed A. Inner Model Theory. Boise, Idaho: Biose 
State University; 2013.

6. Berto F. Theres Something about Gödel the Complete 
Guide to the Incompleteness Theorem. Hoboken, New 
Jersey: Wiley-Blackwell; 2009.

7. Cameron PJ. Sets, Logic and Categories. Berlin: 
Springer; 1999.

8. Corazza P. Addressing the problem of large cardinals 
with Vedic Wisdom. Int J Math Conscious 2012;1:67-89.

9. Ferreirs J. The motives behind cantors set theory 
physical, biological, and philosophical questions. Sci 
Context 2004;17:49-83.

10. Holy P. In: Firedman S, Lucke P, editors. The Outer Model 
Programme. Bristol: The University of Bristol; 2013.

11. James I. History of Topology. Amsterdam: Elsevier; 
2008.

12. Leung KT, Chen DL. Elementary Set Theory, Parts I 
and II. Hong Kong: Hong Kong University Press; 1970.

13. Malliaris M, Shelah S. General Topology Meets Model 
Theory, on P and T; 2013. Available from: https://www.
pnas.org/content/pnas/110/33/13300.full.pdf.

14. Niven I, Zuckerman HS, Montgomery HL. An 
Introductionto the Theory of Numbers. New York: 
Wiley; 1990.

15. Olsen SA, El Naschie MS. When Zero is Equal to One; 
A Set Theoretical Resolution of Quantum Paradoxes; 
2011. Available from: https://www.researchgate.net/
publication/279750137_when_zero_is_equal_to_one_a_
set_theoretical_resolution_of_quantum_paradoxes.


