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ABSTRACT
Once upon a time, this author starts research in the relations between Australia’s number of cases in 
influenza and weather. The outcome has been hypothesized with a structural equation model. In this 
article, the author tries to evaluate the model. It is true that one can apply the evaluation to both of the 
formative measurement model and structural model through certain suitable procedures. At the same 
time, this author approximates the model by the linear regression method. The result is one can apply the 
regression to the Hayes’ Process model and find out the wanted model with mediation and moderation 
effects. In addition, one can also use the Granger Causality Test to examine all of the hypothesized causal 
relationships between those independent variables such as temperature, wettest_1, the concentration 
of carbon dioxide, strongest wind, and coolest and the number case of influenza infected. The final 
outcome is that Hayes’ model 91 is the best mediated one with carbon dioxide as the moderated factor. 
This author will also explain in details why we have the above prescribed Hayes’ model 91 as the 
proposed regression model approximation to causality from the SPSS data analysis.
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INTRODUCTION

After this author’s previous structural model in 
describing the relationship between the number 
of case in influenza and weather (Australia), one 
needs to evaluate it. Through the evaluation, one 
can modify the model and the most important 
thing is one can evaluate this author’s HKLam 
Theory. In the following sections, this author will 
depict a brief review in how one should evaluate 
the formative measurement model, structural 
model together with the assessment of the causal 
relations from regression approximation. It is 
hoped that all of the above evaluation processes, 
one can verify the truthiness of my proposed 
HKLam Theory. While the main results focus 
on the models selection (Hayes’ model analysis) 
and their corresponding equations. These events 
explain why this author chooses Hayes’ model 91 
as the wanted mediation model.

THEORETICALLY BACKGROUND

Evaluation of the formative measurement 
model

First of all, one is required to know what 
convergent validity is. It is indeed a measure 
that correlates with other measures within the 
same construct under different indicators (such as 
formative vs. reflective) in the case of a formative 
measurement model. This is known as redundancy 
analysis (Chin, 1998). Or the formative measured 
construct acts as an exogenous latent variable that 
predicts an endogenous latent variable through 
some reflective indicators. This gives rise to the 
value 0.8 or higher (with 0.7 as minimum) for the 
path between Y (formative) and Y (reflective).
Next, when there are high correlation values 
occurred between formative indicators, this is 
known as collinearity. If there are more than 
two involved indicators, then this is referred as 
multicollinearity. In order to access the level of 
collinearity, researchers are required to compute 
the value of tolerance (TOL).[2] This can be done 
through two steps:
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1.	 Regress	 the	first	 formative	 indicator	with	 all	
same block remaining indicators, calculate the 
proportion	 of	 variance	 of	 the	 first	 indicator	
that associated with others (R^2)

2. TOL can then be calculated from the formula 
using (1-R^2).

Indeed, the measure of collinearity is the variance 
inflation factor (VIF) which is just the reciprocal 
of the TOL. In the case of PLS- structural equation 
model, Hair et al. in 2011 told us that there may be 
a potential linear problem when the TOL value is 
lower than 0.2 and with a VIF value higher than 5.
Finally, one should examine the indicators’ outer 
weight and outer loading. When both of them are 
not significant, then the indicator is needed to be 
deleted.

Evaluation of the structural model

First, one needs to check the collinearity of those 
indicators [Figure 1]. The procedure is the same 
as those mentioned in the section “Evaluation of 
the Formative Measurement Model.” Second, one 
is required to evaluate the structural model path 
coefficients.[3] Actually, when the path coefficients 
are more closely to +1, this represents a stronger 
positive relationship with statistically significant. 
While for the path values closer to zero, it means 
weaker relationship. For the bootstrap standard error, 
when an empirical t value is larger than the critical 
value, then the t-value is significant with a certain 
among of error probability. This may refer to most 
researchers’ usage of P-values to assess significant 
levels. Practically, a p-value means the probability 
of getting a t-value when one observes conditionally 
from the supported null-hypothesis. Third, another 
value for us to evaluate the model is the coefficient of 
determination (R^2 value). It is used to measure the 
predictive power of the model and is just the squared 
correlation between the actual and predictive values 
in endogenous construct. Indeed, R^2 ranges from 0 
to 1 where higher level of its value implies a more 
accurate prediction. In scholarly marketing research, 
0.75, 0.5, and 0.25 represent substantial, moderate, 
or weak predictive power (Hair et al., 2011; 
Henseler et al., 2009). However, it is dangerous to 
select a model purely based on the R^2. With the 
multiple regression, one may apply the adjusted 
coefficient of determination (R2

adj). It avoids those 
bias in complex model. Fourthly, one can test how 
the endogenous constructs may be impacted by 
the omitted constructs. This is referred to the f2 — 

the effect size. Technically, one can calculate the 
change in R2 from the estimation of the Path Least 
Square model twice. While f2 with values 0.02, 
0.15, and 0.35 indicates small, medium, and large 
effect (Cohen, 1988). For those values smaller than 
0.02, this means there is no effect of the exogenous 
latent variable. Fifthly, the Stone-Geisser’s Q2 value 
is a measure of the model’s out-of-sample predictive 
power I.e., the predictive relevance. In other words, 
Q2 tells us how well the path model can predict the 
originally observed values. Actually, Q2 value uses 
the blinding procedure and performs sampling for 
the omission of every d-th data point. Hence, Q2 
computes those parameters for the remaining data 
points (Chin, 1998; Henseler et al., 2009; Tenenhaus 
et al., 2005). In fact, blindfolding is an iterative 
model re-estimation. Finally, one may compare the 
relative impact of predictive relevance through the 
measure to the q2 effect size.

Assessment of the causal relationships

Theoretically, this author’s suggested HKLam Net-
Seizing Theory can be expressed mathematically 
in the following ways:
1. The Bayesian Probability part: For all conditional 

probabilities to events, they can be expressed in 
terms of the corresponding Bayesian trees. While 
these trees can be expressed in terms of matrices

2. The Linear Mapping part: One can evaluate 
the linear mapping through the selection of 
a suitable linear transformation. Through the 
transformation, one can map it to the proposed 
casual relationship. This author notes that in 
order to verify a linear transformation, the 
transformation should have the following 
properties:	T:	U	→	V

I. T (U + V) = T(U) + T(V)and
II. T(cU) =cT(U)

Abstractly, for a collection of all linear maps, T: 
V	→	V,	denoted	by	End(V)	is	a	(non-commutative)	
ring, where addition is a point-wise addition:

(T1 + T2)	(V)	|→	T1(V) + T2(V)
And the respective multiplication is the 
composition of:

(T1. T2)	|→	T1(T2(V))
Now choose some particular T∈END(V). By the 
universal property of the polynomial ring k[x], one 
can	define	a	ring	homomorphism	k[x]	→	END(V)	
by simply declaring that
x should go to T. The result is the evaluation 
homomorphism
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evT:	k[x]	→	END(V),	evT(p) = p(T)
To be precise, one may have the following:
If V is a k-vector space, and T ∈ End (V) is some 
linear	map	T:	V	→	V,
then the polynomial:

p = a0 + a1x +…+ anx
n∈ k[x]

Evaluated at T is just: a0 + a1T +…+ anT
n∈ End(V) 

where Tk is T composed with itself k times, and 
(aT) is the element defined by (aT)(v) = a*(TV)

Actually, partial least square is only used to 
find the relations between two matrices (X and 
Y). That is PLS is a latent variable approach 
which one can model the covariance structures 
of two spaces. In practice, a collection of data 
for different variables (like this author’s data 
file — Australia_weather_influenza.xlsx) can 
be expressed in form of a matrix. Then, one 
may perform Bootstrapping in statistics with 
the use of software SmartPLS. The purpose is to 
find out those causal relationship together with 
the expression of these relations in form of the 
required matrices.

This author notes that for the domino effects (or the 
later part of my proposed philosophy), it suffixes 
to find out those causal relations. Theoretically, 
suppose there are variable matrices X, Y, and Z, 
they can be expressed as follows:

X=TPT+E
Y=UQT+F|
Z=VRT+G

Where X is an n X m matrix of predictors, Y is an n 
X p matrix of the corresponding responses (to X). 
T and U are n X l matrices that are, respectively, 
projections of X and projection of Y. P and Q are 
respectively, m X l and p X l orthogonal loading 
matrices; and matrices E and F are the error terms. 
Similarly, one may apply the same decomposition 
method to Y and Z. The aim is to maximize the 
covariance between T and U together with V.
Next, one may try to estimate the factor and 
loading matrices T, U, V and P, Q, R. One may 
then construct the linear regression between X and 
Y, Y and Z as

Y = XB + B0 and Z = YD +D0.
The above way is known as partial least squares 
method for column vector Y and Z or matrices Y 
and Z. Actually, for a series of domino effect, one 
will have:

Y = XB + B0
Z = YD + D0 or Z = {XB + B0} D + D0

This means one can always express the series 
of domino effect in a sequence of recursive 
approximated manner or a partial least square 
regression.
To be precise, the Bayesian Matrix, say [M], can 
be expressed by the regression as:
[M] [LT] = X + (XB + B0) + {(XB + B0)D + D0}

  ————— Eqt (1)
where [LT] is the associated linear transformation; 
while the converse is also true:
X + (XB + B0) + {(XB + B0)D + D0} = [M] [LT]

Hence, from the above mathematical expression, 
the causal relationships that found from my 
proposed Net-Seizing Theory can be assessed by 
Baron and Kenny regression method (1986) — 
Testing for Mediation. The steps are listed as 
below:
Step I: Conduct a simple regression analysis with 
X predicting Y in order to test for path “c” alone. 
Or, one may have: “path “c”
  Y = B0 + B1X + e0	 X→Y
Step II: Conduct a simple regression analysis with 
X predicting M to test for path “a”. Or one may 
have:
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path“a”
2 3 1M  B  B X  e X M= + + →

Step III: Conduct a simple regression analysis with 
M Predicting Y to test the significance of path “b” 
alone. Or one may have:

path“b”
4 5 2Y  B  B M  e M Y= + + →

Step IV: Conduct a multiple regression analysis 
with X and M Predicting Y. Or one may have:

6 7 8 3
path “c’ 

Path “b”

Y  B  B X  B M  e

X
M Y

= + + +

→
→

In step I to III, when one or more of these 
relationships are non-significant, then one may 
usually conclude that mediation is not possible 
or likely with exceptions from MacKinnon  
et al., 2007. If one assumes there are significant 
relationships from step I to step III, one can proceed 
to step IV. There is some form of mediations when 
path b remains significant after controlling for X. 
If M is controlled and X is no longer significant, 
the finding gives full mediation. When both X and 
M significantly predict Y, the finding provides 
partial mediation.
When we go a further step, compare the above Eqt 
(1) with the the Eqt in step IV, we get:

[M][LT] = (X + XB + XBD) + (B0 +B0D) + D0
= (I + B + BD) X + B0D + B0D0 —————-(2)
Obviously, from the regression equation in Step 
IV, the matrix (or vector) D in the term “B0D”of 
equation (2) can be viewed as a wanted mediator. 
In other words, rather than the regression equation 
for prediction, we may thus construct a hypotheses 
Hayes model with a feasible moderator.
Indeed, there are defects of Baron and Kenny’s 
mediation test. First, the test never assesses the 

significance of the indirect path or how X affects 
Y through the paths “a” and “b.” Second, the 
test suffers much from the Type II error of some 
true mediation effects (Mackinnon et al., 2007). 
Alternatively, there are two other approaches to 
test the mediation:
1. Judd and Kenny Difference of 

CoefficientsApproach;
2.	 Sobel	Product	of	CoefficientApproach.

Although there are drawbacks, this author will still 
employ Baron and Kenny’s regression method as 
a way to evaluate the finding causal relationships 
in chapter fifteen.
In brief, one can evaluate the Bayesian tree matrix 
by linking it to the casual relationship matrices 
through the linear transformation in forms of a 
polynomial matrices.

Major results — a regression model 
approximation to causality

Granger test for causality
In order to test the proposed causal relationships, 
one may need to perform the Granger Causality 
Test. This author employs the software E Views for 
such Granger examination. One can find out the 
corresponding related diagram and hence the linked 
causal relation diagrams as shown in the next page.
There are several possible Ganger causal paths, 
three of them are [Table 1]:
1. Coolest —-> Temperature —-> Strongest 

Wind	—->	Influenza_1
2. CO2 <—-> Temperature —-> Wettest_1 —-> 

Influenza_1
3. CO2 <—-> Temperature —-> Strongest Wind 

—->	Influenza_1.
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Indeed, one can first convert the data set into time series 
by statistical programming software R first. Then, 
one can apply the maximum likelihood estimation 
for the fitting of the above Granger Causal relation 
to build the corresponding models for the prediction. 
As the process is similar to the following mediation 
analysis by software SPSS add-on Hayes PROCESS, 
this author decides to omit the approximation.

Mediation analysis for the causal relationships 
found by smartPLS  
(Lam, 2019)

Formally speaking, in order to test a causal 
relationship, one should perform causal analysis. 
Indeed, causal analysis = regression analysis (or any 
test) + theory (and hypothesis) or logical analysis. 

Usually, in statistics and economics, causality is 
often tested by regression (i.e. the present influenza 
relationship research case). Actually, one should 
perform exploratory causal analysis which is 
known as data causality or causal discovery. It is 
the use of statistical algorithms to infer associations 
in observed data set. In addition, these data sets are 
potentially causal under strict assumptions.
Therefore, according to the results of chapter 
fifteen, there are potentially several cases of causal 
relationships. According to the aforementioned 
Baron and Kenny’s Testing of mediation method, 
one obtains the following partial least square 
regression results (by R programming) [Table 2]:
To sum up, all of the four steps of Baron and Kenny’s 
method are fulfilled. In other words, we have:
•	 Step	I:	Wettest	→	Influenza	cases
•	 Step	II:	Wettest	→	Temperature
•	 Step	III:	Temperature	→	Influenza	cases
•	 Step	 IV:	Wettest	+	Temperature	→	Influenza	

cases
Hence, the proposed causal relationship — wettest 
and influenza is actually a fully mediated one with 
temperature as the immediate mediator. This event 
indirectly implies that wettest and influenza is 
actually a causal relationship.
The second one is the evaluation of the causal 
relationship	 “wind	 and	 influenza”:	 Wind	 →	
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Table 1: Detecting	the	Granger	causality	between	different	weather	variables	and	the	influenza	in-flected.
X NOT Granger Cause Y Probability F-Statistics Result (T/F)
Influenza_1,	temperature 0.25998 1.383348 1

Temperature,	influenza_1 0.06221 2.934096 FALSE
Temperature	granger	causes	Influenza_1

influenza_1,	coolest 0.04790 3.234151 1

Coolest,	influenza_1 0.00788 5.332592 FALSE
Coolest	granger	causes	influenza_1

Influenza_1,	Strongest_Wind 0.38803 1.074871 1

Strongest_Wind,	Influenza_1 0.00127 4.900275 FALSE
Strongest Wind granger causes 
influenza_1

CO2_1, Temperature 3E-06 16.6114 FALSE
CO2_1 granger causes Temperature

Temperature, CO2_1 0.0003 9.44135 FALSE
Temperature granger causes CO2_1

Wettest_1, Temperature 0.70065 0.358226 1

Temperature, Wettest_1 0.011874 4.303410 FALSE
Temperature granger causes Wettest_1

Wettest_1, Coolest 0.60749 0.503310 1

Coolest, Wettest_1 0.02245 4.093170 FALSE
Coolest granger causes Wettest_1

1. CO2_1 and Temperature constitutes a symmetric granger cause relationship.
2. The above table’s data values are obtained from running E-View software where the raw
data is downloaded from Australian government web-site.)

Table 2: Using Baron & Kenny Steps to identify the mediation relationships demonstrated by using the JASP & R 
coding.
Baron & 
Kenny Step

JASP&R-Code Coefficients P-Value Error 
Term

Model Equations Reject 
the Null 
Hypothesis

I Influenza~wettest,	
data=australia_
weather_influenza

Intercept=3.7699516
Wettest = 
-0.0001773

0.0884 0.4926 influenza=3.7699516-0.0001773* 
Wettest

Influenza	
infected is 
unaffected by 
Wettest.

II Temperature~wettest,	
data=australia_
weather_influenza

Intercept=1.631e+0
Wettest=1.705e-03

0.01884 3.398 Temperature=1.631e+01+1.705e-03 
*Wettest

Temperature is 
unaffected by 
Wettest.

III Influenza~temperature,	
data=australia_
weather_influenza

intercept=5.21750
temperature = 
-0.08998

6.532E-08 0.3904 Influenza=5.21750-0.08998*	
temperature

Influenza	
inflected	is	
unaffected by 
temperature.

IV Influenza ~ wettest + 
temperature, data = 

Intercept =
5.214
Wettest =
‑2.627e‑05
Temperature = 
‑8.855e‑02

4.988E‑07 0.3935 Influenza = 5.214‑2.627e‑05 
* Wettest + (‑8.855e‑02) * 
temperature

Influenza is 
unaffected by 
the combined 
effects of 
Wettest and 
Temperature

Wettest	→Temperature	→Influenza.
The following list are the partial least square 
result (Hayes Process Model Macro) that obtained 
through software SPSS [Tables 3-5]:
Wettest and Wind

Temperature and (Wind Together with Wettest)

We observe that the model equation for 
Temperature from (Wind and Wettest) is:
Temperature = 14.7740 + 0.0107*Wind + 
0.0016*Wettest
Influenza and (Wind and Wettest and Temperature)
We observe that the model equation for Influenza 

from (Wind, Wettest and Temperature) is:
Influenza = 43685.53 + 
26.71*Wind - 2.185*Wettest- 2054.05 * 
Temperature
Once we observe that the model equation for 
Wind and Wettest is: Wettest = -322.2481 + 
7.5870*Wind
Temperature = 14.7740 + 0.0107*Wind + 
0.0016*Wettest
Influenza = 43685.53 + 26.71*Wind–
2.185*Wettest- 2054.05 * Temperature
All of the above data shows that there should be a 
Hayes PROCESS model 6 established as like the 
following:[4]
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Table 3: Evaluation of the causal relationship between Wettest and Wind by the software SPSS. The model equation is: 
Wettest = (-322.2481) + 7.5870*Wind
A. Wettest and Wind
Outcome Variable: Wettest
Model Coeff P-Value Standardised 

Coefficients
Constant -322.2481 0.5471 Nil

Strongest Wind 7.5870 0.0320 0.2795

Covariance matrix of regression parameter estimates:
Constant Strongest 

Wind
Constant 283057.659 -1815.9068

Strongest Wind ‑1815.9068 11.9175

Table 4: Evaluation of the causal relationship between temperature and (Wind & Wettest) by the software SPSS. The 
model equation is: Temperature=14.7740+0.0107*Wind+0.0016*Wettest
B. Temperature and (Wind together with Wettest)
Outcome Variable: Wettest
Model Coeff P-Value Standardised 

Coefficients
Constant 14.7740 0.0000 Nil

Strongest Wind 0.0107 0.0201 0.0703

Wettest 0.0016 0.0352 0.2853

Covariance matrix of regression parameter estimates:
Constant Strongest Wind Wettest

Constant 8.8727 -0.0579 0.0002

Strongest Wind -0.0579 0.0004 0.000

Wettest 0.0002 0.000 0.000

Table 5:	Evaluation	of	the	causal	relationship	between	cases	of	influenza	infected	and	(Wind	&	Wettest	&	Temperature)	
by the software SPSS.
The model equation is:	Influenza=43685.53+26.71*Wind	-	2.185*Wettest	-	2054.05*Temperature.	
C. Influenza infected and (Wind and Wettest and Temperature)
Outcome Variable: Wettest
Model Coeff P-Value Standardised Coefficients
Constant 43685.5285 0.0107 Nil

Strongest Wind 26.7064 0.7751 0.0361

Wettest -2.1845 0.5417 -0.0803

Temperature -2054.0522 0.0016 -0.4219

Covariance matrix of regression parameter estimates:
Constant Strongest Wind Wettest Temperature

Constant 273111110 -1177928.9 12766.3258 -5642138.7

Outcome Variable: Wettest
Strongest Wind -1177928.9 8654.2225 -82.1602 -4074.2063

Wettest 12766.3258 -82.1602 12.6576 -609.2217

Temperature ‑5642138.7 ‑4074.2063 ‑609.2217 381897.287

This author notes that although the bootstrap confidence 
interval straddles zero which means that the mediation 

is not significant (or actually a border case), it does not 
imply that thing we are estimating is zero. Thus, this 
author finally concludes wettest and temperature are 
the mediators for wettest and influenza.
Furthermore, if we add the concentration of carbon 
dioxide as the moderator that lays between temperature 
and influenza, one may obtain the results below:
The aforementioned outcome tells us that the 
index of moderated mediation is referring to the 
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“weight for the moderator in a linear function 
relating to the size of indirect effect of X on Y to 
the moderator” (Hayes, 2018, p.491).
When the index is not zero, this will mean the indirect 
effect relates linearly with the moderator. Hence, one 
can claim there is a moderated mediation (Hayes, 
2018). On the contrary, if the bootstrap confidence 
interval does not includes zero, this event implies 
the indirect effect will not relate linearly with the 
moderator (Hayes, 2018) [Table 6]. Therefore, we 
conclude that carbon dioxide is the moderator to 
temperature and influenza. This event is because the 
above data shows that both the index is greater than 
zero and the confidence interval contains a zero.

Then, one may obtain the Hayes PROCESS model 
87 as shown below:

In addition, if one changes the independent variable 
from wettest_1 to temperature (while wettest_1 
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and strongest_wind become the mediators), we 
will get the following results [Table 7]:

It is obviously observed from the above data that 
the index of moderated mediation has increased 
greatly from 2 to nearly 5 if we made the 
amendment of the change to temperature as the 
independent variables. Then the concentration of 
carbon dioxide becomes the moderator between 
wettest_1 and strongest_wind. This means that the 
indirect effect depends heavily on the moderator 
carbon dioxide. According to Hayes in 2018, 
the index of moderated mediation is slope of the 
equation formed by indirect effect. If it is equal 
to zero (i.e. flat) then the indirect effect is not 
related to the moderator. However, if the index 
is strongly greater than zero, the indirect effect 
depends heavily on the moderator. Thus, carbon 
dioxide acts as the wanted moderator. Therefore, 
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Table 6:	Carbon	Dioxide	acts	as	the	moderator	for	temperature	and	influenza	(Direct	&	Indirect	Effects	Data	Analysis)	by	
the software SPSS.

Direct And Indirect Effects of X and Y

Effect Se t p LLCI ULCI
8.6924 94.3905 0.0921 0.927 -180.6324 198.0172

Conditional And Unconditional Indirect Effects Of X on Y

Indirect	Effect:	Strongest	Wind	—>Wettest	—>Influenza

Effect BootSE BootLLCI BootULCI
-9.8542 19.5547 -62.4032 13.8536

Indirect	Effects:	Strongest	Wind	—>Temperature	—>Influenza
CO2_1 Effect BootSE BootLLCI BootULCI
398.9220 -29.5673 64.3348 -127.4806 136.0163

403.6400 -21.9630 49.1415 -100.2869 102.1029

408.9040 -13.4787 37.3614 -83.1024 73.7515

Index of moderated Mediation
Index BootSE BootLLCI BootULCI

CO2_1 1.6118 4.1492 -9.1840 8.621

Indirect	Effect:	Strongest	Wind	—>	Wettest	—>	temperature	—>	influenza
CO2_1 Effect BootSE BootLLCI BootULCI
398.9220 -33.5439 31.4431 -124.8538 -3.0546

403.6400 -24.9169 24.9493 -97.3552 -2.1555

408.9040 -15.2915 23.3582 -83.9560 3.3906

Index of moderated Mediation
Index BootSE BootLLCI BootULCI

CO2_1 1.8285 2.5126 -1.3135 8.5707

Table 7: Carbon dioxide acts as the moderator between wettest_1 and strongest_wind (Direct & Indirect Effects Data 
Analysis) by the software SPSS.

Direct And Indirect Effects of X and Y

Effect Se t p LLCI ULCI
-1898.6041 646.8798 -2.9350 0.0049 -3194.9887 -602.2194

Conditional And Unconditional Indirect 
Effects

Of X on Y

Indirect	Effect:	Temperature	—>	Wettest_1	—>	Influenza

Effect BootSE BootLLCI BootULCI
-290.2719 220.5588 -776.4535 87.7065

Indirect	Effect:	Temperature	—>Strongest_Wind	—>Influenza

Effect BootSE BootLLCI BootULCI
-0.614 63.2151 -111.2673 155.1546

Indirect	Effects:	Temperature	—>	Wettest_1	—>	Strongest_Wind	—>	influenza
CO2_1 Effect BootSE BootLLCI BootULCI
398.9220 14.1275 44.2673 -61.9476 116.5677

403.6400 36.6441 62.5905 -42.0169 194.8251

408.9040 61.7665 109.6117 -58.7893 370.4109

Index of moderated Mediation
Index BootSE BootLLCI BootULCI

CO2_1 4.7725 10.6077 ‑6.2494 35.7283

we conclude that the Hayes PROCESS model 
91 is the most suitable one for describing the 
relationship between different weather variables 

and the number of case in influenza in Australia 
when compared to the previous one. The final and 
conclusive model is shown in below:
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CONCLUSION

To conclude, the above test and model tell us 
that wettest_1 and the temperature are the most 
feasible causal relationship to the number case 
of influenza. The results are obtained from the 
mediation analysis (Baron and Kenny’s Testing 
and the Haye’s PROCESS modelling for SPSS). 
Similarly, one can show that the sequenced 
domino effects is indeed a list of causal relations. 
Practically, one should find out all of the possible 
regression models (in this case, one should 
employ the carbon dioxide and strongest_wind 
as the independent variables respectively for 
the dependent variables number of case in 
influenza, other variables such as temperature 
and Wettest_1 will be used as mediator together 
with suitable moderators). Then, one should 
compare the r-square, r-square(adjusted), and 
r-square(predicted) for each of these calculated 
models. The aim is to find out the best goodness 
fit in these models from these r values and hence 
selects the best fitted model for the wanted causal 
relations. While at the same time, the concentration 
of carbon dioxide acts as the moderator that lays 
between Wettest_1 and strongest_wind provide 
that temperature as the independent variable 
(model 91). On the other hand, the concentration 
of carbon dioxide also acts as the moderator 

Figure 2: Granger Causal relationships obtained from the above nine corresponding linkings

Figure 1: A summary of procedures to evaluate the 
formative measurement indicators
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between the mediator temperature and the 
dependent variable number of case in influenza 
(model 87). The most significant discovery in 
this paper is that the role of carbon dioxide is 
indeed a moderator. It gives a moderated effect 
to other mediators. This author remarks that 
a moderator is difference from a mediator in 
that moderator only affects the strength of the 
concerning variables. While the mediator can 
explain the relationship between two variables. 
The existence of CO2 as a moderator implies that 
the gas has a conditional effect to the number of 
cases of influenza infected. Hence, there may 
be a thermal degradation from CO2 to CO at 
around 20oC (Asperen et al., 2015).[1] However, 
the symptoms of carbon monoxide poisoning are 
similar to the common flu infected. In addition, 
the dissolved carbon dioxide can have an 
influence during the production of recombinant 
hemagglutinin component that induced from an 
influenza vaccine by insect cells (Meghrous et al., 
2015).[5] These are the reasons for the conditional 
effects of CO2 in the number of case of influenza 
infected. Therefore, I suggest there should be 
a reduction in the emission of pollutants such 
as CO2 before and during the peak months of 
common flu infection.
All in all, the above Hayes Process model 91 
can help us verify the truthiness of this author’s 

HKLam Net-Seizing Theory. In other words, all 
of the causal relations can be find by a mediation 
analysis. In addition, all of the causal relationships 
can be examined by Granger Causality Test 
followed by Maximum Likelihood estimation for 
fitting into the models. Hence the second part of 
the philosophy — domino effects can be expressed 
as a causal relationship is proposed to be correct.
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