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ABSTRACT
It has been thousands of years that tooth decay is a health problem among human beings (Chu, 2018). 
The disease is like our common daily influenza. The aim of this paper is to use the heated topic big 
data analysis and its related statistical mathematics to predict the possible behavior behind kindergarten 
children tooth care response – a predictive medicine for the prevention. Moreover, the paper also develops 
a thought experiment from the Bayes’ decision tree. The aim is to determine some suitable strategies in the 
case of kindergarten tooth caries – for regenerative medicine. In the research, I have found that butterfly 
effect can form a predictive philosophy. I rationale it with Bayes theory and map each outcome with the 
corresponding domino effects (Heinrich theorem). While in the middle part, I insert random variables, 
respectively, as the connection. This event forms a completely new theory which can catch the chaos and 
dominos of the butterfly effects (philosophy) or the so-called Lorenz system. I propose the name should 
be the (HKLam’s) Net-Seizing Theory. When my theory is expressed in terms of linear transformation, 
random matrix, and regression, one may use it in the prediction model (for the posterior distribution) 
of human behavior, etc. If we construct a reversed Bayesian tree with all necessary posterior predicted 
distributions (models), we may get the wanted forecasting prior (distribution) model and are a recursive 
formalism or the Bayes filter. We may establish the corresponding regression tree, etc. Furthermore, with 
the Savage theory, one can apply the machine learning technique to generate the necessary policy for 
handling the social problem which is just like the child’s tooth care shown in this research paper – there 
is a need to subsidy our kindergarten as early as possible for the result of best social return.
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INTRODUCTION

Tooth decay is a common health issue as prevalent 
as influenza. Dental caries can often occur in 
children and young adults before the appearance of 
permanent teeth. Research has shown that fluoride 
can prevent tooth decay effectively. Recent studies 
have proven that the chemical compound, silver 
diamine fluoride when it is using in the tooth 
decay, it can treat dental carious lesions. Hence, 
the primary focus of this paper is to investigate the 
causes of cavities in kindergarteners (as they have 
milk teeth) in Hong Kong (3–6 years or students 
from nursery [K1] to upper kindergarten [K3]) and 
the efficky of fluoride treatment. Then, one may 
set up the wanted predictive model for cavity’s 

development and hence develop a plan for the 
strategies of regenerative medicine in our teeth.

BACKGROUND – THE DECISION-
MAKING THAT COMES FROM THE 
BUTTERFLY

The forward part of my decision making body 
(like the butterfly effect) is first illustrated from the 
divergent part of a Bayesian tree diagram that follows 
by a series of domino events using for particularly in 
the generation of a suitable policy [Figure 1].
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E1, E2,… En are independent events with different 
probabilities Pr1, Pr2,…, Prn acts as the outcome 
probabilities. A and E1, E2,… En have their 
respective causal dependencies.
For the convergent part of Bayes theory plus 
Heinrich [Figure 2], one (like the second part 
of the mirrored image of the Bayes theorem) is 
mapped to those domino consequences (Dom1, 
Dom2, Dom3,…Domn) corresponds to the 
different possibilities event E1, E2,…, En and the 
probabilities. Hence, one can use the Bayesian 
tree with the domino events (e.g. Domn,…,Dom2, 
and Dom1) to evaluate the efficiency of the hidden 
Markov Model (SEM).
Third, for the series of domino effect and the 
converse of the Bayes theorem, they constitute the 
backward part of my proposed decision-making 
body.
Indeed, DME 4 represents the corresponding 
domino consequence event 4 which is mapped to 
the inverse Bayes tree with the outcome event D 
and D’. One may then move upward the tree until 
event A and A’. I note that both the forward and 
the backward parts of the proposed philosophy 
come from the Bayes theory and the Heinrich 
theorem. Thus, I summarize my proposed one 
in catching the butterfly effects (maybe I name 
it as the (HKLam’s) Net-Seizing theory) like the 
following:
1. A Bayes’ probability tree diagram (Gorka 

and David, 2016)[1] which lists all the feasible 
outcomes of an event (forward and backward 

section from Bayes, Convergent, and Divergent 
Bayesian tree from decision-making – Savage 
theory)

2. A series of domino effect consequences or 
the Heinrich theory in risk management and 
engineering (Thierry, 2016)[2]

3. The immediate part (random variables) of linear 
mapping (Leung, 1974)[3] or transformation is 
added such that one may rationale (Lam, January 
2019)[4] the philosophy. Hence, things can be 
approximated through the regression model.

My Original Discovery (Contribution) in the 
Linear Mapping of the Bayes Theorem

Consider the following imaginary statistical 
experiment that is often used when teaching 
statistics:
One should first toss three (or more) coins together 
in front of the participants such that heads are on 
the front and tails are on back. The participants 
are then required to list all possible outcomes after 
tossing the coins.
In general, the set of all feasible results (outcomes) 
would be:
S = {HHH, HHT, THH, HTT, THT, TTH, 
TTT} (suppose one will obtain such expected 
result). There are also other combinations and 
permutations of heads and tails when each of them 
is assigned with a number. Hence, the outcome 
space is not just unique.
Finally, the participants must count the number of 
tails for each possible outcome and then list them 
on a table, as seen below:
Possible outcomes (si) HHH HHT HTH THH HTT HTT TTH TTT

No. of tails obtained ti 0 1 1 1 2 2 2 3

(Clearly, the above table does NOT list all possible 
outcomes for tails.)
A function f (which should be called the random 
variable) must also be considered. Intuitively,
f maps all the possible outcomes (si) to the number 
of tails Ti
fi: si | s ti (i.e. no. of tails obtained as it takes values 
t = 0,1,2,3 … (Leung, 1974)
or strictly speaking
f: Sri T (i.e. R – Real Number)
Actually, through the linear mapping, the non-
linear chaos can be converted into the linear one 
through a suitable choice of random variables. 
One of the cases is the mapping between Bayes 

Figure 1: Divergent part of my proposed decision-making 
body

Figure 2: The convergent part of my proposed decision-
making body
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outcome space, random variables, and the domino. 
Hence, one can find the matching linear regression 
model approximations for different research areas. 
Obviously, in such sense, we can “catch the chaos 
and the dominos.” This event is known as capturing 
the “Butterfly Effects (or the philosophy)” behind. 
Thus, I propose such kind of methodology should 
be termed as the HKLam’s Net-Seizing theory.
When my theory is expressed in terms of both 
mathematics and statistics, it becomes
[Random Matrix] [LT] = Linear regression of the 
causal domino effects

And
[Linear regression of the causal domino effects] 
[LT] = [Random Matrix]
For the first part of Bayes plus Heinrich, one may 
further get a diagram [Figure 3] that rationales it 
and gets the structure of my Net-Seizing theory. 
Actually, one should insert the probability that 
multiplied with weight Pri*Wgi between the 
random variables RVi and the last branch of 
event Ei. For the converse part of my Net-Seizing 
theory [Figure 4], each domino causal effect is 
corresponding to a suitable linear transformation 

Figure 3: The rationalization of the forward part of my proposed sed decisionral Capital and Parental Mediation for Digital 
Inequity. Thousand Oaks, California: SA

Figure 4: The rationalization of the converse part of my proposed “Net-Seizing” theory with random variables as the 
immediate connection between events and dominos
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(random variable) and further mapped to a Bayesian 
tree. Hence, one can then express my Net-Seizing 
theory in terms of mathematics and statistics and 
get the following diagram [Figure 5] in matrix 
notation. The convergent (or the backward but 
NOT the convergent – mirror part) of the matrix 
notation diagram [Figure 6] is also true.
The study of the students reading behavior in Lam, 
November 2018[5] can be acted as my proposed 
theory’s example [Figures 7-11]. The following 
diagrams outline the corresponding inverse 

Bayesian tree diagram and domino consequences 
such that one may find the respective conditional 
probabilities for the convergent part of my 
proposed theory in the following page.
Practically, we can calculate the corresponding 
conditional probabilities of the convergent part 
of Bayes plus Heinrich from the inverse of the 
Bayesian tree diagram like the following:
At the same time, with referencer to the results in 
Lam, December 2019[6] and Lam, March 2020,[7] 
this author discovers that one may always 

Figure 5: One can express the random probability matrix of my proposed philosophy in terms of a linear transformation to 
those causal relations that found by partial least square method like structural equation modeling

Figure 6: One can approximate the causal relationships that found by partial least square method from a linear 
transformation followed by the random probability matrix of my proposed philosophy, in matrix notation
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express the Bayesian probability tree in terms 
of a matrix. The outcome matrix can finally be 
approximated by applying the Bayesian linear 
regression. Or we may have the following 
results (– assume the square matrix operation 
while the non-squared one can be converted to 
the squared by MatLab coding but is out of the 
scope of the present paper):
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Substitute back the right hand side of the first 
equality into the above equation, we have:
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However, from the result of Lam, March 2020,[19] 
the conditional probability matrix A (given B) can 
also be expressed in terms of linear regression 
through a suitable linear transformation (LT), thus 
we have:
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The above outcome implies that when the 
Bayesian linear regression is multiplied by the 
inverse of the event B’s probability matrix, it can 
be well approximated through an ordinary linear 
regression equation multiplies with the inverse 
of the linear transform of conditional probability 
matrix A (given B). Or one can find out the inverse 
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of the event B’s probability matrix if we know the 
inverse of Bayesian regression.
Hence, one can apply both linear regression, and 
the Bayesian regression (for predictive model) 
methods for the approximation to a random matrix 
and more about the inverse of probability matrix B:
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Substitute back into the equation:
A = X β’ β-1 + ε’

We have:

A = Xβ’* [ 
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To sum up, one can always express the Bayesian 
linear regression of the probability matrix of 
event A in terms of the probability matrix B, an 
ordinary linear regression, and the inverse of the 
linear transform to conditional probability matrix 
A (given B). At the same time, the conditional 
probability matrix A (given B) can be expressed 
as the substitution back of the product among 
(the inverse of Bayesian linear regression, an 
ordinary linear regression, and the inverse of 
the linear transform) into the Bayesian linear 
regression equation of conditional probability 
matrix A. One of the applications of the above 
matrix equalities (or equations) is in the field 
of quantum computing. One can always use the 
causal relationships (quantum switch) and a 
random matrix, etc., to model different quantum 
systems in an approximated manner. The final 
result is shown in the above matrix expression 
(*) for our conditional probability A (and B) – a 
random matrix modeled to a quantum system.

In much a similar manner, one may also use the 
aforementioned matrix expression (*) to model our 
living organisms’ mutation together with its cause 
and effect. The result can then be applied in tissue 
engineering or regeneration. In practice, the method 
to find out the inverse of a matrix is an interesting 
topic for our university’s advanced mathematics 
study (mathematics major students) or the course 
such as Matrix theory and its application.

MATERIALS AND METHODS

This research aims to answer the following 
questions:
1. What is the level of tooth decay observed 

in K1 kindergarteners at the time of the first 
examination?

2. What is level of tooth decay observed in older 
(lower kindergarten [K2], K3) kindergarteners 
after fluoride treatment?

3. Why we need fluoride treatment and what are 
the implications of it?

4. What the predicted outcomes will see from K2 
and K3 children fluoride treatment during the 
prevention of tooth decay?

5. How should the authorities develop corresponding 
strategies for regenerative medicine of teeth?

The investigation will comprise the correlation 
and survey methods to answer these questions. 
First, one will use quantitative statistical research 
methods to determine the relationships between 
the different variables. Second, one will also use 
a qualitative survey to improve the understanding 
of the implications of fluoride treatment in 
kindergarteners.
Both, the correlation studies and survey, will find 
out the implications of fluoride treatment before 
analyzing the causes. Finally, the correlation 
design will help in predicting the incidence of 
tooth decay after fluoride treatment.
The study will begin by making records of local 
Hong Kong kindergartens belonging to K1 and K2 
(Chu, 2000).[8] Subsequently, one will use a tailor-
made software to pull the necessary data into MS 
Excel. One will record down the variables such as 
name, examination and birth dates, the number of 
decayed and infected teeth, and treatment required. 
From, the collection of these data, one may apply 
them to Bayesian inference and Bayesian regression 
from the correlation relationship through simulation 
using software such as R. Hence, one can set up 
the needed predictive model for caries, etc. While 
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it is critical that sample size, the value of precise 
measurements, and the use of unbiased samples 
during the quantitative research. This study will 
use both explanatory and predictive designs. We 
propose a few variables for the former: Level of 
tooth decay observed at the first examination, 
the status of cavities after fluoride treatment, and 
the number of missing teeth. Subsequently, the 
researcher will use a model comprising these 
variables and the number of decayed teeth. The 
researcher will compare one group with decayed 
teeth after fluoride treatment with another group with 
decayed teeth without fluoride treatment, that is, the 
control group. The total number of participants will 
be 180,000. Indeed, there is a prediction research 
design. The investigator can identify those specific 
variables to help predict the behavioral outcomes 
from the prediction model setting up before we 
have mentioned. This study concerns with fluoride 
treatment, the level of tooth decay, and how it can 
aid in the prediction of healthy teeth. Tooth decay is 
a time-related variable. The research will correlate 
the predictor and outcome variables. We will use 
multiple regression to determine the predictor’s 
effects on the variables. Hence, one can find out 
the desired causal relationships with a structural 
equation model or partial least square method 
from the collected data. Thus, one can predict the 
outcomes of after the fluoride treatment.
A longitudinal study (Creswell, 2012)[9] involves 
repeated observations of the same variables 
(e.g. population) over a certain period. Thus, we 
will also conduct qualitative yearly interviews 
(until K3) with the previous (K1) kindergarten 
students. The researcher will ask questions from 
an interview guide, listen to the answers and/
or see behavior, and record the responses. The 
interviewer asks open-ended questions, without 
options for responses, and records the answers 
provided in a qualitative interview. We usually 
use a longitudinal study to identify the reasons 
for the development of outcome implications 
(e.g. the implications of fluoride treatment). This 
information can guide the plan to develop better 
strategies for regenerative medicine for teeth.
There are being some ethical considerations while 
handling the mankind type of big data investigation. 
The concerns may include privacy, informed consent, 
data ownership and transparency, etc. This applicant 
believes that the researchers can solve those public 
worries if they can eliminate those misunderstandings 
among the investigated respondents.

RESULTS AND DISCUSSION

This applicant tries to reference the wanted 
research results (as suggested taking place in 
Hong Kong Kindergarten school) through using 
those data obtained from the United State Centre 
for Disease Control. The major working steps are:
1. Developing a suitable predictive philosophy 

such as the butterfly one (as shown in the 
previous section) and rationalizing it by my 
Net-Seizing theory

2. Using the structural equation model method to 
find out the hypothesis’s causal relationships, 
so as the one indicated by Australia’s influenza 
case in Lam June 2019[10]

3. Convert the data (collected from U.S.A CDC 
Department) into a time series. Perform the 
Granger Causal Connectivity Analysis (Seth, 
2009)[11] by the software EViews. Fit those 
data into the maximum likelihood estimation 
(or using Hayes’ mediated-moderated model) 
to approximate the causality behavior with 
multilevel modeling whenever necessary. 
Then, one can continue the Bayesian estimation

4. Applying Bayesian inference to find the prior and 
likelihood distribution of the collected data. Hence, 
one can find the deserved Posterior distribution 
from the United States’ tooth cavity’s data. SPSS 
software can perform all the mentioned work

5. After finding the parameters (mean and standard 
derivation) for the posterior distribution, one 
may then use the Bayesian regression for the 
following step of posterior’s estimation. This 
applicant suggests one should use the software 
JASP for the calculation of the wanted Bayesian 
regression model (or equation), hence, one may 
predict the behavior of a child with tooth cavities

6. From the predicted posterior distributions 
(models) together with the reversed Bayesian tree, 
one may further construct the forecasting prior 
distribution (model) for our child tooth cavities. 
This is indeed a kind of recursive formalism

7. Establish the corresponding (probability) 
decision tree (or random forest) or even 
Bayesian adaptive tree for Bayesian causal 
inference from our tooth statistics; the aim is 
to determine how well is the tooth situation in 
the countries like the U.S.A. and thus create 
some suitable strategies in the regenerative 
medicine for the case of teeth

8. Implement the strategies or policies found in 
the previous step.
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The following is the outcomes for Bayesian inference, where we can obtain the outputted tables from 
using the software SPSS:

Group statistical value
Indicator_Value Counts Average value Standard error Standard average error
Data_Value  = 1 72 50.110 15.5512 1.8327

 = 2 46 45.896 12.8593 1.8960

 =3 72 20.844 8.8841 1.0470

Posterior distribution of independent sample average values
Mode End-stage average Variation 95% confidence interval

Upper limit Lower limit
Data_Value= 1 −4.214 −4.214 7.218 −9.490 1.062

 = 2 −29.265 −29.265 4.584 −33.470 −25.061

= 3 −25.051 −25.051 4.890 −29.398 −20.704

Log likelihood function_2 Log likelihood function_3

Log
likelihood

Log
likelihood 

Prior Analysis_1 Prior Analysis_2

likelihood likelihood 

Average Posterior Value Distribution:
Data_Value Difference

likelihood 

Average Value(E):
Data_Value

Log
likelihood 

Log 
likelihood 

likelihood likelihood 

Prior Analysis_2 Prior Analysis_3

Average Posterior Value Distribution: Data_Value
Difference

likelihood 

Average Value(E):
Data_Value
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The regression equation (or model) is: Data_Value 
= 0.135*(Response_Rate) + 0.196*(Percent_
eligible_for_the_NSLP_SampleStudents) + 24.881.

Coefficient Mean
Model 1

Intercept 24.881

Response_Rate 0.135

Percent_eligible_for_the_
NSLP_SampleStudents

0.196

Bayesian Regression 
Equation (1)

Data_Value = 0.135*(Response_Rate) 
+ 0.196*(Percent_eligible_for_the_
NSLP_SampleStudents) + 24.881

Model 2

Intercept 24.881

Sample_Size 0.001

Response_Rate 0.060

Bayesian Regression 
Equation (2)

Data_Value = 0.001*(Sample_Size) + 
0.06*(Response_Rate) + 24.881

Model 3

Intercept 24.881

Sample_Size 0.001

Percent_eligible_for_the_
NSLP_SampleStudents

0.073

Bayesian Regression 
Equation (3)

Data_Value = 0.001*(Sample_Size) 
+ 0.073*(Percent_eligible_for the_
NSLP_SampleStudents) + 24.881

The regression equation (or model) is: Data_Value 
= 0.001*(Sample_Size) + 0.06*(Response_Rate) 
+ 24.881

The regression equation (or model) is: Data_Value = 
0.001*(Sample_Size) + 0.073*(Percent_eligible_
for_the_NSLP_SampleStudents) + 24.881.

This applicant notes that one can use the similar 
techniques as listed above in modeling the Data_
Value corresponding to three different indicators 
of the tooth treatment data. Hence, one can 
predict the tendency of tooth decay that relates 
to the children daily behavior. One of the tooth 
indicators – untreated tooth decay Bayesian linear 
regression table (from statistical software JASP) 
is listed below in the next page.
With reference to the above result, one may obtain 
the Bayesian (predictive) regression equation 
(model) as: Data_Value = 6.302e-5*(Sample_
Size) - 0.143*(Response_Rate) - 0.079*(Percent_
eligible_for_the_NSLP_SampleStudents)
Coefficient Mean
Model

Intercept 23.410

Sample_Size 6.302e-5

Response_Rate -0.143

Percent_eligible_for_the_
NSLP_SampleStudents

-0.079

(Predictive) Bayesian 
regression equation

Data_Value = 23.410 + 
6.302e-5*(Sample_Size) 
-0.143*(Response_Rate) – 
0.079*(Percent_eligible_for_the_
NSLP_SampleStudents)

Hence, it is obviously that the percentage of 
untreated tooth decay is indirectly proportional 
to the response rate. This event suggests that 
the investigated population may be among the 
low socioeconomic position (Ekholm, 2010).[12] 
My predictive models (or equations) tell us how 

Figure 7: The forward pat of the students’ reading behavior, random variables, and the domino consequences (similar to 
Savage theory in decision-making)
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these low socioeconomic people will take less 
care (behavior) to their tooth decay. This event is 
because they may have more tooth decay without 
any medical treatment. Hence, one may perform a 
similar technique for the prediction of behavior to 
another two types of tooth indicators.

A Decision tree with expected values 
for finding a suitable strategy in teeth, 
regenerative medicine – a thought experiment

From my butterfly effect philosophy, one can further 
develop the Bayesian decision theory for finding 
the best strategy during decision making. Thus, 
another thing that we need to discuss is finding 
the most suitable strategy for our regenerative 
medicine. Suppose there is a thought experiment 
including five grades of children with different cost 
for making decisions such as whether one should 
join the tooth care scheme (JTC). This event (the 
thought experiment) is shown in the following 
diagram [Figure 12] in the next page by employing 
the software – SpiceLogic Decision Tree analysis.

The software finds that locationID > 8 is the 
evaluated policy for stochastic dominance (to 
determine the expected utility maximizer). One 
may also get all the feasible paths with their 
corresponding payoff:
With reference to both of the results (paths’ 
payoff and the decision tree), the total payoff 
for the suggested path LocationID >8 is only 
1140, which nearly attains payoff’s highest 
value (1200 for the JTC with Tooth_Care_4). 
The minimum value of the payoff is 270 and 
the medium value is 560 corresponding to the 
path with Data_Value smaller than 21.3 and 
also there are some other paths that lead to 
the same payoff. If one selects the proposed 
path, this event shows that when there is a 
tooth care scheme, the society can always 
obtain the best return. Moreover, the thought 
experiment implies that when the researcher 
collects enough daily data, one can find the 
most suitable strategy. Hence, one can get the 
best path under the condition that there is a need 
to maximize the payoff. I remark here that there 
is a public policy selection theory (Ebenezer, 
2016)[13] which is named as rational choice 
theory. Its main context is explaining social 
phenomena as the outcomes of a personal action 
that is considered to be rational. The advantage 
of rational theory is that it can guarantee the 
decision-making (selection) of a suitable policy 
(Emeka et al., 2008)[14] can result in a maximum 

Figure 8: The backward parts of the students’ reading behavior and the domino consequences
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social gain or benefit. Obviously, my thought 
experiment fits well with the rational theory.

Regression tree for predicting the trend

Figure 12: The proposed of events for the prevention of 
tooth decay

One can also use a regression tree for the foreseeing 
the trend features of collected dental data from the 

Figure 11: The second level of the inverse part of the 
Bayes theorem for computing the required conditional 
probabilities to the convergent part of my proposed 
philosophy

Figure 9: The convergent parts (mirrored image of Bayes’ theory) of the students’ reading behavior and the domino 
consequences.

Figure 10: The inverse part of the Bayes theorem for 
computing the required conditional probabilities to the 
convergent part of my proposed philosophy
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U.S. CDC. In the following section, this author 
applies the “rpart” and the “rpart.plot” function of 
the R program to find out the predicted Response_
Rate percentage and hence determines the mean 
absolute error from the difference between actual 
and predicted values. In the next page, we can 
show a regression tree in terms of the Response_
Rate.
The highest predicted Response_Rate is 85.9% 
with the probability of only 0.02. This event 
corresponds to the “locationabbr” of OR and WV 
together with the SchoolEndYear greater than 
year 2018. Another highest predicted Response_
Rate is 78% with the probability of nearly 0.26. 
The event respects to the Percent_eligible_for_
the_NSLP_SampleStudents of less than 19% 
and “locationabbr” other than AR, HI, IA, KY, 
NH, and SC. This event is also the most probably 
expected one that occurred. It seems that areas 
with “locationabbr” not included in AR, HI, 
IA, KY, NH, and SC have greater willingness 
of response. Thus, the complementary areas 
may be richer or have some kind of funding in 
dental care also. However, as the probability is 
not too low which tells us that the population 
of this group of people is about one in a fourth. 
The lowest predicted Response_Rate is zero 
with the probability of only 0.018. This event 
also corresponds to SchoolYearStart less than 
year 2000 with the Percent_eligible_for_the_
NSLP_SampleStudents of less than 19%. The 
likelihood of the rest predicted Response_Rate 
is around 0.02 to 0.08, which are quite evenly 
distributed.
Indeed, the importance of difference variables (the 
first five) w.r.t the Response_Rate is:

The above result tells us that the five importance of 
variables which include the location (i.e. different 
states), the start and end of the school years, the 
percent of eligible for NSLP state, and the sample 
size do determine the response_rate. In other 
words, where the respondents live, when the 
research starts and how large is the sample size 

with the percent of eligible are the key factors 
(or the social-economic background behind 
the population) that related to the respondent’s 
population (or who will be investigated). It 
seems that area with code AR, HI, IA, KY, NH, 
and SC is much richer or having some kind of 
funding scheme in fighting tooth decay that starts 
from 2018. This author also remarks that the 
corresponding R code for the regression tree is 
shown in below:

This author remarks that one may compare 
different Bayesian linear models from their Bayes 
factors with respect to their BFM and BF01. The 
smaller the value of BF01, the higher the chance 
for the model hypothesis H1 than H0 to be likely 
occurred. This event is because BF01 is just the 
reverse of BF10. In addition, one may find out 
the expectation values from the different BFMs. 
Hence, we can select the highest BF10 with well-
balanced BFMs in finding the best Bayesian prior 
model. (Notes: Both the P(M) and P(M|Data) may 
need to be considered for selecting the best model 
also). Next, from the best prior model selected, 
we can have calculated the corresponding 
posterior model through Bayesian estimation with 
the calculated mean as the expectation values. 
Finally, one may discover the policy that relevant 
to that posterior model. Actually, the symmetrical 
theory is applied whenever one needs to public 
relation problems.
The following is the practice of what the above 
mentioned in theory:
The above data show that the best model found is:
Response_rate ~ Sample_Size + Percent_eligible_
for_the_NSLP_SampleSchools + Grade_Value
The corresponding BF10 is 19.982 which is 
highly expected to occur than the null hypothesis. 
Moreover, the BFM is 32.254 which is the expected 
value for that particular model. In the coming 
paragraph, this author will perform the Bayesian 
estimation for the posterior model.
When one is performing Bayesian estimation 
for the posterior model using statistical software 
SPSS, the result is listed below:
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Models comparison P(M) P(M|Data) BFM BF10 R2

Indicator_value + 
Sample_size + Percent_
eligible_for_the_
NSLP_SampleStudents 
+ Grade_Value + Data_
Value + LocationID

0.143 0.189 1.394 1.000 0.065

Sample_size + Percent_
eligible_for_the_
NSLP_SampleStudents 
+ Grade_Value

0.007 0.188 32.254 19.982 0.058

Sample_size + Percent_
eligible_for_the_
NSLP_SampleStudents 

0.010 0.115 13.531 9.161 0.047

Indicator_value 
+Sample_size + 
Percent_eligible_
for_the_NSLP_
SampleStudents 
+ Grade_Value + 
Data_Value

0.024 0.097 4.428 3.103 0.064

Sample_size + Percent_
eligible_for_the_
NSLP_SampleStudents 
+ Grade_Value + 
Data_Value

0.0100 0.082 9.235 6.489 0.060

Sample_size + 
Percent_eligible_
for_the_NSLP_
SampleStudents 
+ Grade_Value + 
LocationID

0.010 0.063 6.972 4.999 0.059

Sample_size + 
Percent_eligible_
for_the_NSLP_
SampleStudents 
+ Grade_Value + 
LocationID

0.024 0.058 2.533 1.852 0.062

Indicator_value 
+Sample_size + 
Percent_eligible_
for_the_NSLP_
SampleStudents + 
Grade_Value

0.010 0.051 5.644 4.096 0.058

Indicator_value 
+Sample_size + 
Percent_eligible_
for_the_NSLP_
SampleStudents 
+ Grade_Value + 
LocationID

0.024 0.036 1.514 1.148 0.059

Sample_size + 
Percent_eligible_
for_the_NSLP_
SampleStudents + 
LocationID

0.007 0.019 2.674 2.003 0.047

Bayesian estimates of coefficients a,b,c

Posterior 95% confidence 
Interval

Parameter Mode Mean Variance Lower 
Bound

Upper 
Bound

Sample_Size 39.535 39.535 15.547 31.804 47.266

Percent_eligible_
for_the_NSLP_
SampleStudents

0.001 0.001 0.000 0.000 0.001

NSLP_
SampleSchools

0.223 0.223 0.002 0.136 0.310

Grade_Value 1.762 1.762 0.868 0.065 3.589
aDependent Variable: Response_Rate, bModel: Sample_Size, Percent_eligible_
for_the_NSLP_SampleStudents, NSLP_SampleSchools, Grade_Value, cAssume 
standard reference priors

From the above data, it is observed that Grade_
Value has the highest mean value. This event 
implies that when the tooth healthy scheme is 
implemented in K1 or the earliest, the expected 
outcome and return to prevent tooth decay in U.S. 
kindergarten students will be better. Since for those 
students in the higher grade like K3 will soon have 
their milk tooth replacement in the coming one or 
two years. If the youngest kindergarten students 
can protect their tooth during the earliest stages, 
there will be a less expenditure that spent before 
the permanent tooth. Thus, this author suggests 
that there is a need to have tooth healthy checking 
scheme – a public policy for our kindergarten 
students in Hong Kong. My proposed public 
policy also agrees well with the aforementioned 
rational theory in the previous paragraph.

Predictive models and their implications

It should be note that from the above regression tree 
model, one can further perform the prediction with 
the R program code “predict” to obtain the wanted 
forecast values. In an example, if one’s initial 
assumption believes that a particular coefficient 
(β) is positive but the fitting result gives a negative 
one, a contradiction appears. One of the case study 
is the fitting of physical experiment data that 
are used in the nuclear databases – inconsistent 
data that cause system error (Georg, 2018). This 
event shows the philosophy, logicism behind the 
model (Siu, 2009).[15] Georg in 2018 notes that 
one can finally celebrate these experiment data 
back to become best fitted and analyzed through 
the Bayesian methods (Georg, 2018).[16] In such 
case, those prescribed data without precise fitting 
celebrations may be acted as the deserved working 
case for our intelligent machines. A practical 
logicism model case study is the chromatic 
induction model for the integrated visual system. 
Simultaneously, when we continue to feedback 
the predictive values into the Bayesian tree, (say 
for 5 times) according to the procedural rules, then 
the outcome implies the existence of philosophy, 
formalism can be used to model (Lorenzo et al., 
2011) the nested causal relationships behind. 
A generalized case study is the predictive loop 
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model that works under procedural laws. This 
event is used for the prediction of the earthquake 
when it cooperates together with the database 
management system. Finally, when one develops 
the Hidden Markov Model w.r.t. the data (such as 
in this thesis one) given, then this event provides 
us with the philosophy, intuitionism behind. Once 
we can compare the RMSE values calculated from 
the above three models mentioned and thus decide 
the philosophy indicated. This event is because 
the RMSE values usually tell us the level of model 
fitting. Obviously, the best fitted model (with the 
above three cases) will then demonstrate which 
kind of the philosophy laying backward among 
the data collected. In this thesis, if the Hidden 
Markov Model computed has the lowest RMSE 
value when one compares it with the other two, 
the Markov model will be the best fitted one, the 
tooth care behavior of our investigated people is 
thus only motivated according to their intuition.
To sum up, one can always express implicitly 
the three types of philosophy (can be extended to 
various ones) in terms of three kinds of mathematical 
model during their Prediction, respectively. In 
other words, one may always relate the models to 
philosophies. This event encourages us to model 
our body, mind, and spirit. It is because in Lam, 
July 2016, I connect the body, mind, and spirit with 
formalism, intuitionism, and logicism. If it is true 
that I can also mathematically model the above 
three philosophies, the implication is one can also 
indirectly model our body, mind, and spirit. Another 
side effect is we can also teach our computer what 
philosophy is Lau and Yuen, 2009.[17] Thus, the 
final result that associated with the above two 
implications may be the development of human-
like artificial intelligent machine.
In particular, our planets can be viewed as the body 
since they are governed up by nature rules. While 
for our universe, the observations give us the clue 
of the natural constants. This event is the source 
of intuitionism or our mind. Finally, whenever 
there is a contradiction to these constants during 
computations, the universe’s spirit – consciousness 
or the logicism shows itself.
Actually, a person’s lifestyle has a close 
relationship with philosophy. One of the cases is 
a healthy philosophy (somehow a person’s belief) 
of dieticians which may lead to a healthy lifestyle. 
This event will then give a satisfaction in his/
her life and is linked with a group of person or a 
social class’s consciousness. I note that one may 

apply the cluster analysis (Yuen et al., 2016)[18] 
to the qualitative data for the classification of 
them with similar characteristics or patterns. This 
implies the possibility of modeling different social 
classes’ consciousness. If we model our human’s 
conscious, the result is one may have an in-depth 
understanding of the integrated information 
theory or even the generalized one. The outcome 
is an advancement in the field of quantum physics, 
computer science, and mathematics. One of the 
interesting application is the feasibility to obtain 
a communication based model of consciousness 
or even to go ahead a step – the rationalization 
to the philosophical model of time consciousness 
(Mölder, 2014).[19] It is true that there are various 
types of consciousness model. It includes the 
functionalism or the philosophy of mind. The 
result of these consciousness models such as 
the architectural one may finally lead to the 
conclusive integrative theory of consciousness. 
One of the possible cases to model these human’s 
consciousness can be referenced with the article 
Lam, March 2020 and will be left to the next cycles 
of investigation for those researchers interested.

CONCLUSION

The most significant aspect of this research is to 
investigate caries of prevalence in local kindergarten 
students and determine the effectiveness of 
fluoride treatment in preventing tooth decay. 
This event can be accomplished by verifying the 
proposed butterfly effect philosophy (during the 
prediction procedure), using the data collected 
from the research. The outcome of the study may 
better equip teachers to educate young children 
regarding the importance of using toothpaste with 
suitable fluoride content, or to undergo fluoride 
treatment for tooth decay. Education is the best 
method to prevent caries in kindergarteners since 
they are most likely to listen to a trusted adult 
(i.e. their teachers). Moreover, the collected data 
could be used to help predict behavioral patterns 
which cause caries (this event can be examined by 
hypothesis testing: Post-test and pre-test), thereby, 
preventing caries-causing practices. Finally, one 
may obtain the deserved Bayesian regression 
from the simulation of Bayesian inference, with 
estimated mean and variance that show normal 
distribution. Hence, a prediction model for caries 
development will be obtained. Indeed, with the 
use of the data (associated to different variables) 



Carson: How we may rationale our decision making

AJMS/Jul-Sep-2021/Special Issue 216

that collected from the research, one can establish 
the corresponding decision trees. If one can 
further compare these trees and select the best 
optimized path, the most feasible choice for a 
better decision-making will be applied. Then, one 
may develop and find the most suitable strategy 
for the regenerative medicine in teeth through our 
prediction model such as the need of subsidy for 
kindergarten tooth care – a machine generated 
policy.
Figure 12 depicts the flow of development for 
the research proposal as shown in the following 
diagram.
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