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ABSTRACT
Recurrence relations are used to study the behavior of terms of a particular sequence. In this paper, I 
am primarily focused on determining the ratio of (n + 1)th term to nth term which is called as limiting 
ratio. Beginning with the recurrence relations for Fibonacci sequence, I extended it gradually to 
obtain a more generalized recurrence relation and determine the limiting ratio for that general 
case. Several figures are provided to verify and enhance the understanding of the limiting results 
obtained.
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INTRODUCTION

Ever since, Italian mathematician and merchant 
Leonardo Fibonacci published his seminal 
book “Liber Abaci” in 1202 CE, the concept 
of Fibonacci sequence continues to be known 
widespread to mathematical community 
throughout the globe. The terms of the 
Fibonacci sequence can be generated through 
nice and simple recurrence relation. Several 
generalizations of Fibonacci sequence and 
its associated Lucas sequence were studied 
extensively by many mathematicians and the 
significant results regarding these concepts were 
published in the exclusive journal Fibonacci 
Quarterly, a journal devoted for publishing 
results focusing on Fibonacci sequence and its 
related ideas. In this paper, we try to generalize 
the recurrence relation used for Fibonacci 
sequence and derive new results with respect to 
the limiting ratios. Several figures were provided 
to illustrate and verify the results obtained in this 
paper. The final result will provide a new insight 
in understanding the behavior of limiting ratio 
of generalized recurrence relations.

DEFINITIONS

The recurrence relation of Fibonacci sequence is 
given by
P(n+2)=P(n+1)+P(n), n≥0, P(0)=1, P(1)=1 (2.1). In 
(2.1), we observe that except the first two terms, each 
term of the sequence is sum of the two previous terms.
The generalized recurrence relation of Fibonacci 
type sequence is defined by

P ( n + m ) = P ( n + m – 1 ) + P ( n + m – 2 ) + … + 
P(n+1)+P(n), n≥0, m≥2 (2.2)

where P(0)=P(1)=P(2)=…=P(m–2)=P(m–1)=1. 
In (2.2), we observe that except for the first m 
terms, each term is sum of the previous m terms 
of the sequence.
The ratio of (n+1)\th term to the nth term of a 
sequence as n ��  is defined as the limiting ratio 
of the sequence. We denote the limiting ratio by λ. 
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SPECIAL CASES

When m = 2

If m = 2, then according to (2.1), the recurrence 
relation would be
P(n+2)=P(n+1)+P(n), n≥0, P(0)=1, P(1)=1 (3.1). 
We notice that this case provides the Fibonacci 
sequence. The characteristic equation of this 
recurrence relation is given by x2–x–1=0 (3.2). 
The roots of equation (3.2) being quadratic 

equation, are given by x � �1 5

2
. Among these, 

the positive root is given by x � �1 5

2
 (Figure 1). 

This number which is approximately 1.618 is 
called the Golden Ratio.
Now from (3.1), we have P n

P n
P n
P n

( )

( )

( )

( )

�
�

�
�

2 1
1 . 

If λ is the limiting ratio of (3.1) then as n ��
from (2.4), we get λ2–λ–1=0. But this is precisely 
the same equation as (3.2). Beginning with 1, 
since each term of the Fibonacci sequence is non-
decreasing, the limiting ratio should be positive. 
Hence, the limiting ratio λ is the positive real root 

of λ2–λ–1=0 which is� � �1 5

2
. This number is 

called the Golden Ratio. Thus, if m = 2, then the 
limiting ratio (of the Fibonacci sequence) is the 
Golden Ratio given by 1.618 approximately (3.3).

When m = 3

If m = 3, then from (2.2), we get
P(n+3)=P(n+2)+P(n+1)+P(n), n≥0, P(0)=1, 
P(1)=1, P(2)=1 (3.4). The characteristic 
equation of (3.4) is given by x3–x2–x–1=0 (3.5). 
By Newton – Raphson method, we see that the 

positive real root of the polynomial in (3.5) is 
1.83928 approximately. Figure 2 verifies this 
fact.

From (3.4), we get P n
P n
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If λ is the limiting ratio of (3.4) then as n ��  
from (2.4), we get λ3–λ2–λ=0. But this is precisely 
the same equation as (3.5). Hence, the limiting 
ratio of (3.4) is the positive real root of (3.5) which 
is 1.83928 approximately (3.6).

When m = 4

If m = 4, then from (2.2), we get
P(n+4)=P(n+3)+P(n+2)+P(n+1)+P(n), n≥0, 
P(0)=1, P(1)=1, P(2)=1, P(3)=1 (3.7). The 
characteristic equation of (3.7) is given by x4–x3–
x2–x–1=0 (3.8). By Newton – Raphson method, we 
see that the positive real root of the polynomial in 
(3.8) is 1.92756 approximately. Figure 3 verifies 
this fact.
From (3.7), we get 

Figure 2: Graph of y=x3–x2–x–1

Figure 3: Graph of y=x4–x3–x2–x–1Figure 1: Graph of y = x2–x–1
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is the limiting ratio of (3.7) then as n ��  from 
(2.4), we get λ4–λ3–λ2–λ–1=0. But this is precisely 
the same equation as (3.8). Hence, the limiting 
ratio of (3.7) is the positive real root of (3.8) 
which is 1.92756 approximately (3.9).

When m = 5

If m = 5, then from (2.2), we get
P(n+5)=P(n+4)+P(n+3)+P(n+2)+P(n+1)+P(n), 
n≥0
P(0)=1, P(1)=1, P(2)=1, P(3)=1, P(4)=1 (3.10)
The characteristic equation of (3.10) is given by 
x5–x4–x3–x2–x–1=0 (3.11). By Newton – Raphson 
method, we see that the positive real root of the 
polynomial in (3.11) is 1.96594 approximately. 
Figure 4 verifies this fact.
From (3.10), we get
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Ifλ is the limiting ratio of (3.10), then as n ��
from (2.4), we get λ5–λ4–λ3–λ–1=0. But this is 
precisely the same equation as (3.11). Hence, the 
limiting ratio of (3.10) is the positive real root of 
(3.11) which is 1.96594 approximately (3.12).

When m = 10

If m = 10, then from (2.2), we get
P ( n + 1 0 ) = P ( n + 9 ) + P ( n + 8 ) + P ( n + 7 ) + …
+P(n+1)+P(n), n≥0,
P(0)=P(1)=…=P(9)=1 (3.13)
The characteristic equation of (3.13) is given 
by x10–x9–x8–x7–x6–x5–x4–x3–x2–x–1=0 (3.14). 

By Newton – Raphson method, we see that the 
positive real root of the polynomial in (3.14) is 
1.99901 approximately. Figure 5 verifies this fact.

From (3.13), we get 
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If λ is the limiting ratio of (3.13), then as n ��  
from (2.4), we get
λ10–λ9–λ8–λ7–λ6–λ5–λ4–λ3–λ2–λ–1=0.
But this is precisely the same equation as (3.14). 
Hence, the limiting ratio of (3.13) is the positive 
real root of (3.14) which is 1.99901 approximately 
(3.15).
Thus, through the five cases for m = 2, 3, 4, 5, 
and 10 in sections 3.1 to 3.5, respectively, we 
noticed that as m increases, the limiting ratios 
of the generalized recurrence relation defined in 
(2.2) approaches 2. I formally prove this through 
the following theorem.

THEOREM 1

The limiting ratio of the generalized recurrence 
relation converges to 2
Proof: The generalized recurrence relation (as 
defined in (2.2)) is given by
P(n+m)=P(n+m–1)+P(n+m–2)+…+P(n+1)+P(n), 
n≥0, m≥2 (4.1)
where P(0)=P(1)=P(2)=…=P(m–2)=P(m–1)=1
The characteristic equation of the generalized 
recurrence relation is given by xm–xm–1–xm–2–…–
x3–x2–x–1=0 (4.2)

Figure 5: Graph of y=x10–x9–x8–x7–x6–x5–x4–x3–x2–x–1Figure 4: Graph of y=x5–x4–x3–x2–x–1
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From (4.1), we have 
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Now using (2.4), as n ��  (4.3) can be written 
as

λm–λm–1–λm–2–…–λ3–λ2–λ–1=0 (4.4)

We notice that (4.4) is the same equation as 
the characteristic equation of the generalized 
recurrence relation given by (4.2). Hence, the 
positive real root of the characteristic equation 
will be limiting ratio of the generalized recurrence 
relation (4.1).
If f(λ)=λm–λm–1+λm–2–…–λ3–λ2–λ–1, then we find 
that f(1)=–(m–1)<0 since m≥2. Similarly, f(2)=2m–
2m–1–2m–2–…–23–22–2–1=2m–(2m–1)=1>0.
Hence, the positive real root λ of (4.4) must lie 
between 1 and 2 for all m≥2.
Since, (λ–1)(λm–1+λm–2+…+λ3+λ2+λ+1)=λm–1 (4.5), 
using (4.4) in (4.5), we get (λ–1)λm=1. Simplifying 
this equation, we get 1+λm+1=2λm giving

�
�

� �
1

2 4 6m ( . ) .

Since λ>1, 1
0

�m �  as m �� . Hence, from 

(4.6), we see that λ→2 as m �� .

Thus, the limiting ratio λ  of the generalized 
recurrence relation converges to 2.
This completes the proof.
To know more about generalized recurrence 
relations and their behavior see.[1-7]

CONCLUSION

Generalizing the recurrence relation of the 
Fibonacci sequence, we defined new recurrence 
relation in (2.2). In the case if m = 2, we see that 

it reduces to Fibonacci sequence. It is well known 
that the limiting ratio of the Fibonacci sequence 
is one of the most famous real number called 
Golden Ratio given by 1.618 approximately. We 
proved this fact in this paper in the section 3.1. 
Considering higher values of m as 3, 4, 5, and 10 in 
sections 3.2, 3.3, 3.4, and 3.5, we obtained limiting 
ratios of each case. We also drew graphs of the 
characteristic equations of all recurrence relations 
in sections 3.1–3.5 to verify the obtained limiting 
ratio values. The roots were determined through 
Newton – Raphson method and graphs were 
constructed using Desmos Graphing Calculator 
online software. In analyzing the limiting ratio 
values obtained in section 3, we noticed that as we 
increase the value of m, the limiting ratios were 
as close as possible to 2. This fact was indeed 
proved to be true through theorem 1 of section 4. 
Thus, for each integer value of m≥2, the limiting 
ratios approach the number 2. This result is the 
main objective of this paper. We can extend the 
generalized recurrence relations in several ways 
to obtain further results on limiting ratios and 
discuss their convergence as we did in theorem 1 
of this paper.
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