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ABSTRACT
The linear multistep method is a numerical method for solving the initial value problem, x’ = f(t,x); 

x(t0) = x0. A typical linear multistep method is given by X  x  h f ; k 1n k j n j j n j+
=

−

+
=

+= ∑ + ∑ ≥
j

k

j

k

0

1

0

α β . If βk ≠ 0, 

then, the method is called implicit. Otherwise, it is called an explicit method. Several methods abound 
for deriving linear multistep methods; however, in this work, we center on analysis of the convergence 
and stability of the linear multistep methods. To this effect, we discussed extensively on the convergence, 
relative, and weak stability theories while preliminarily, we discussed the truncation errors of the linear 
multistep methods and consistency conditions for the convergence of the linear multistep methods.
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INTRODUCTION

Preliminary Concepts

Consider the differential equation
x = f(t,x); x(t0) = x0 (1.1.1)
A computational method for determining the 
sequence {xn} that takes the form of a linear 
relationship between xn+j, fn+j, j = 0, 1,…, k is 
called the linear multistep method of step number 
k or k-step methods; fn+j = f (tn+j, xn+j) = f (tn+j, 
x(tn+j)). The general linear multistep method[1] may 
be given thus –

 ∑ = ∑+ +
j

k

j

k

0 0

α βj n j j n jx  h  f  (1.1.2)

Where, αj and βj are constants, αk ≠ 0 and not 
both α0 and β0 are zeros. We may without loss of 
generality, and for the avoidance of arbitrariness 
set αk = 1 throughout
Suppose in Equation (1.1.2), βk = 0,[2] then, it 
is called an explicit method since it yields the 

current value xn+k directly in terms of xn+j, fn+j, 
j = 0, 1,…, k-1 which by this stage of computation 
have already been calculated. If however, βk ≠ 0, 
then Equation (1.1.2) is called an implicit method 
which requires the solution at each stage of the 
computation of the equation.

 X  h f t x   gn k k n k n k+ + += +β ( , )  (1.1.3)

Where, g is a known function of the previously 
calculated values, xn+j, fn+j, j = 0, 1,…, k-1. Suppose 
||f(t, x1) - f(t, x2|| ≤ L ||x1-x2|| then we set M = ℓh|βk| 
so that a unique solution for xn+k exists and the 
computational iteration converges to xn+k if
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We, therefore, see that implicit methods call for a 
substantially greater deal of computational efforts 
than explicit methods; whereas, on the other hand, 
for a given step number k, implicit methods can be 
made more accurate than explicit ones. Moreover, 
they have favorable stability properties as will be 
seen in chapter three.
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Definition (1.1.1)[3,4]

The sequence of points {tn} given by tn = t0 + nh 
(t0 = a), n = 0, 1, 2,…, are called the mesh points 
while h (always a constant) is the mesh (step) 
length.

Definition (1.1.2)[3,4]

Let f:Ψ: IR→IR be functions. We say that f is big 
0 of Ψ as x→x0 and write f(x) = 0 (Ψ (x)) as x→x0 
if there exists k > 0 constant, such that

( )
( )0

f x  
lim

xX X
k

→
=

Ψ

Definition (1.1.3)[3,4]

Let f: Ψ; IR→IR be functions. We say that f is 
small 0 of Ψ as x→x0 and write f(x) = 0
(Ψ (x)) as x→x0 if

( )
( )0

f x  
lim 0

xX X→
=

Ψ

The Local Truncation Error

Let xn+j = x(tn+j), j = 0,1,2,…,k-1, if 0n+j denotes the 
numerical solution with above exact values, then 
(Enright and Hall [1976])
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Localizing assumption means that no previous 
truncation errors have been made and that xn+j = x 
(tn+j), j = 0, 1,…,k-1 this implies that

( ) ( )( )1 1

n k j n j j n j n j
0 0
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Let us define the local truncation error as
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Subtracting we get

x t  T  h f t x t
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Applying the mean value theorem (Brice et al. 
[1969])

Then 

x t  x t  
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Where ηn+k lies between 0n+k and x(tn+k)
Therefore 
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 (1.2.2)
Let en+k represent the error at (n+k) point, so that if 
the method is explicit βk = 0, then Tn+k = en+k and if 
the method is implicit βk≠0 and is small then

T e hn k n k k

tn k n k

+ +≈ ∂
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+ +
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f
x
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To proceed as shown below, we[5,6] note the 
following useful formula
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The truncation error 
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This motivates the following definition

Definition 1.2.1[6,7]

We say that a linear multistep method is of order 
p≥0 if
Tn+k = cp-1 h

p+1 xp+1 (tn) + 0 (hp+2)
Or if in the above c0 = c1 =… = cp = 0, cp+1 ≠ 0

Consistency Condition

Let ( ) ( )n k n k
1  t x   T x
n+ +=  (1.3.1)

To show that the approximate solution {xn |t0≤tn≤b} 
of (1.2.1) converges to the theoretical solution x (t) 
of the initial value problem (1.1.1), it is necessary 
to have
τ(h) = max |Tn+k (x) → 0 as h→ 0 (1.3.2)
tk≤tn≤b
This (Aitkinson [1981]) is often called the 
consistency condition for the method (1.1.2)
We also need to know the condition under which
τ(h) = 0(hm) (1.3.3)
for some desired choice m ≥ 1

Theorem 1.3.1[8,9]

Let m ≥ 1 be a given integer. In order that Equation 
(1.3.2) holds for all continuously differentiable 
functions x (t), that is, that the method (1.12) be 
consistent, it is necessary and sufficient that
And for Equation (1.3.3) to be valid for all 
functions x(t) that are m+1 times

       j j j
0 0 0

 1;  j  1    
k k k

j j j
  

= = =
= ∑ = − ∑ + ∑ =  (1.3.4)

continuously differentiable, it is necessary that

( ) ( )i i 1
j j

0 1
j i j  1 ,  i 2, ,m

k k

j j
 −∑ − + ∑ − = = …  (1.3.5)

Definition 1.4.1[10,11]

A differential equation along with subsidiary 
conditions on the unknown function and its 
derivatives, all given at the same value of the 
independent variable, constitute an initial value 
problem, where the subsidiary conditions are 
initial conditions.

MAIN RESULT ON LINEAR MULTISTEP 
FIXED POINT ITERATIVE METHOD

Analytical Study of the Linear Multistep 
Methods has Revealed the Following Facts:-

a. That the domain of existence of solution of 
the linear multistep methods is the complete 
metric space.

b. That the solution of the linear multistep method 
converges in the complete metric space.

c. That the initial value problem x’=f(t,x);x(t0)=x0 
solvable by the linear multistep in the complete 
metric space is a continuous function.

d. That the linear multistep method satisfies the 
conditions of the Banach contraction mapping 
principle.

e. That the linear multistep method is exactly the 
Picard’s iterative method with a differential 
operator instead of the usual integral operator.

Theorem 2.1: Let X be a complete metric space and 
let R be a region in (t,x) plane containing (t0,x0) for 
x0,x∈X. Suppose, given

 ( ) ( )0 0, ;  = = …x f t x x t x  (2.0)
A differential equation where f(t,x) is continuous. 
If the map f in (2.1) is Lipschitzian and with 
constant K<1, then the initial value problem (2.1) 
by the linear multistep method has a unique fixed 
point.

k 1 k
*

n k j n j j n j
j 0 j 0

 x x x h f  
−

+ + +
= =

= = α + β …∑ ∑
With a two-step predictor-corrector method.

That is, the predictor 
n n
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j 1 j j j j

j 0 j 0
 x x h f  +

= =
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Proof
Let x f x1 0= ( )

x f x f f x f x2 1 0

2

0= ( ) = ( )( ) = ( )

x f x f f x f x3 2

2

0

3

0= ( ) = ( )( ) = ( )



( ) ( )( ) ( )n 1 n
n n 1 0 0x f x f f x f x−

−= = =

x f x f f x f xn k n k

n k n k

+ + −
+ − += ( ) = ( )( ) = ( )…1

1

0 0  

 (2.1)
We have constructed a sequence {xn}n=0 in (X,ρ). 
We shall prove that this sequence is Cauchy.
First, we compute
ρ ρx x f x f xn k n k n k n k+ + + + + +( ) =, ( ( ), ( )1 1  Using (2.1)

n k 2 n k 1K (x , x )ρ + − + −≤  Since f is a contraction
n k 2 n k 1K (f , f )+ − + −= ρ  Using (2.1)

( )n k 2 n k 1K K x , x+ − + − ≤ ρ   Since f is a contraction

2
n k 2 n k 1K (x , x )+ − + −= ρ



K x xn k+ ( )ρ 0 1,

That is, ( ) ( )n k
n k n k 1 0 1K x , x K x , x+
+ + +ρ ≤ ρ …  (2.2)

We can now show that { }xn k n+ =0 is Cauchy.

Let m+k>n+k. Then

( ) ( )
( )
( )

n k m k n k m k

n k 1 m k 2

n k 1 m k

x , x x , x

x , x

x , x

+ + + +

+ − + −

+ − +

ρ ≤ ρ

+ρ +…

+

( ) ( )
( )

n k n k 1
0 1 0 1

n k 1
0 1

K x , x K x , x

K x , x

+ + −

+ −

≤ ρ + ρ +…

+ ρ  

Using Equation (2.2)

Since the series on the right hand side is a geometric 
progression with common ratio <1, it sum to 

infinity is 1

1− k
. Hence, we have from above that

( ) ( )n k
n m 0 1

1x , x k x , x 0 as
1 k

 n k  since k 1

−  ρ ≤ ρ →  −
− → <

Hence, the sequence {xn+k}n=0 is a Cauchy sequence 

in X and since X is complete, { }xn k n+ =0

∞ . Converges 

to a point in X.

Let *
n kx x  as h + → → …  (2.3)

Since f is a contraction and hence is continuous, it 
follows from Equation (2.3) that
f(xn+k)→f(x^*) as n→∞. But f(xn+k)=xn+k+1 from 
(2.2). So
 x f x f xn k n k

*

+ + += ( ) = ( )…1  (2.4)

limits are unique in a metric space, so from 
Equations (2.3) and (2.4), we obtain that

 f x x* *( ) = …  (2.5)

Hence, f has a unique fixed point in X. We shall 
now prove that this fixed point is unique. Suppose 
for contradiction, there exists y*∈X such that

y x* *=  and f y y* *( ) = …  (2.6.)

Then, from Equations (2.5) and (2.6)

( ) ( ) ( )( )* * * * * *x , y f x , f y k (x , y )ρ ρ ρ= ≤

So that

( ) ( )* *k 1  x , y 0− ρ ≥  and ( ) ( )* *k 1  x , y 0− ρ ≥

We can divide by it to get k−1≥0 i.e k≥1 which is 
a contradiction.
Hence x*=y* and the fixed point is unique.
Therefore

 x ± x h ² f a t nn k

j

k

j n j

j

k

j n j n+
=

−

+
=

+= + ≤ ≤∑ ∑
0

1

0

;

Is the linear multistep fixed point iterative formula 
for the initial value problem

( ) ( )0 0x f t, x ;   x t x = =

Of the ordinary differential type.
Finally, to be sufficiently sure, we also show that

k 1 k
*

n k j n j j n j
j 0 j 0

x x x h fα β
−

+ + +
= =

= = +∑ ∑
Satisfies the Lipschitz condition.

x y x y* *

n k n k− = −+ +

k 1 k k 1 k
*

j n j j n j j n j j n j
j 0 j 0 j 0 j 0

x h f  y h f
− −

+ + + +
= = = =

   
= α + β − α + β      ∑ ∑ ∑ ∑
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*± x y h ² f f
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1
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k 1 k

*
1 n j n j 2 n j n j

j 0 j 0
k  x y k  f f

−

+ + + +
= =

= − + −∑ ∑

  ( )
k 1 k

1 2 n j m k
j 0 j 0

k k  z f
−

+ +
= =

= + +∑ ∑

  = +
=

+ +∑K z f
j

k

n j m j

0

Hence x*=xn+k is Lipschitzian and hence is a 
continuous map with the above fixed point.
Respectively, iterative methods for the respective 
linear multistep methods are as follows:

The Explicit Methods Are

i. Euler:
x x hfn n n+ = +1

ii. The midpoints method:

n 2 n n 1x x 2hf+ += +

iii. Milne’s method:

x x
h

f f fn n n n n+ − − −= + + +[ ]1 3 2 1

4

3
2 2

iv. Adam’s method:

x x
h

f f f fn n n n n n+ − − −= + − + −[ ]1 1 2 3
24

55 59 35 9

v. The Generalized predictor method:

x ± x h ² fj

j

j

n

j j

j

n

j j+
= =

= +∑ ∑1

0 1

( )

The Implicit Methods Are

i. Trapezoidal method:

x x
h

f fn

j

n n n

j

+
+

+= + + 1

1
2

1
6

( ) ( )

ii. Simpson’s method:

x x
h

f f fn

j

n n

j

n n+
+

+ += + + + 2

1

1 1
3

4( ) ( )

iii. Simpson’s method:

x x
h

f f fn

j

n n n n

j

+
+

− − += + + + 2

1

2 1 1
3

4( ) ( )

iv. Adams Moulton’s method

x x
h

f f f fn

j

n n n n n+
+

+ − −= + + − +[ ]2

1

1 1 2
3

9 19 5( )

v. Milne’s corrector method:
( j 1) ( j)
n 1 n 2 n 1 n n 1

hx x f 4f f ;n 1
3

+
+ − − + = + + + = 

vi. The Generalized corrector method

x ± x h ² fj

j

j

n

j j

j

j

n

j j+
=

+
=

+ += +∑ ∑1

0

1

1

1 1

( ) ( )

C: The generalized two step (corrector predictor) 
method

 x x hj

j

j

n

j j

j

n

j+
= =

= + …∑ ∑1

0 1

( ) α β  (C1)

 x x h fj

j

j

n

j j

j

j

n

j j+
=

+
=

+ += + …∑ ∑1

0

1

1

1 1

( ) ( )α β  (C2)

Here x Xj

j

+
+ ∈1

1( ) are the corrector points to be 
determined for all j≥0 while x Xj

j

+
+ ∈1

1( )  are 
predetermined before ( j 1)

j 1 x X+
+ ∈ . While the 

iterations are alternatively implement one after the 
other starting first with the predictor.
Note: The generalized compact form of C1 and C2 
is as follows

x x h fn k

j

k

j n j

j

k

j n j+ −
=

−

+
=

+= +∑ ∑1

0

1

0

α β

CONSISTENCY AND STABILITY 
THEORY

In this section, the theory of consistency and 
stability (leading to convergence) is presented for 
the linear multistep method.
Given the linear multistep method

k 1 k

n k j n j j n j n
j 0 j 0

x x h F ;a t n  
−

+ + +
= =

= α + β ≤ ≤ …∑ ∑  (2.7)

Theorem 2.2 Consistency[12-14]

Let xn+j=x(tn+j);j=0,1,2,…,k−1 denote its numerical 
solution

T x t h f t xn k

j

k

j n j

j

k

j n j n j+
=

−

+
=

+ += ( )− ( )∑ ∑
0

1

0

α β ( , )

The local truncation error and

n k n k
1 T (x)
h

τ + +=

Then, the linear multistep method (3.1) is said to 
be consistent if

n k(h) max T (x) 0 as h 0+τ = → →  and 
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∑ =( ) ( )h hm0

For some m≥1 or equivalently, Equation (1.3.2) is 
said to be consistent if

 
k k

j j j
j 0 j 0 j 1
 ; j 1  
= = =

α α + β = …∑ ∑ ∑  (2.8)

Proof:
If the numerical solution of a given linear multistep 
method is

 x x t j kn j n j+ += = … − …( ), , , , ,0 1 2 1  (2.9)

And the local truncation error is

   ( ) ( )
k 1 k

n k j n j j n j n j
j 0 j 0

T x t h f t , x
−

+ + + +
= =

= α − β …∑ ∑  (2.10)

With τn k n kx
h

T x+ +( ) = ( ) …1
,  (2.11)

We want to prove that the linear multistep method

k 1 k

n k j n j j n j n j
j 0 j 0

x x h f ,a t n 
−

+ + + +
= =

= α + β ≤ ≤∑ ∑  (2.12)

Is consistent if

( ) n kh max T (x) 0 as h 0+τ = → → …  (2.13)

And
τ h hm( ) = 0( )  For some m ≥ …1  (2.14)

If xn j+ denotes the numerical solution with the 

above exact values (1.2), then Equation (2.14) 
yields

    

x ± x h² f t x

h ² f t x

n k

j

k

j n j k n k n k

k

k

n j n j

+
=

−

+ + +

=

−

+ +

+ = ( )

+ ( )…

∑

∑
0

1

0

1

,

,  (2.15)

Applying localizing assumption on Equation 
(2.15) means that no previous truncation error has 
been made and that

( )n j n jx x t ,  j 0,1, , k 1+ += = … −

So that we have

   

( )

( )

k

n k j n j k n k n k
j 0

k 1

j n j n j
k 0

x x(t ) h f t , x

h f t , x

+ + + +
=

−

+ +
=

+ α = β

+ β …

∑

∑  (2.16)

Using the local truncation error earlier defined in 
Equation (2.2) we now have

( )

( )

k 1

n k j n j n k k n k n k
j 0

k 1

j n j n j
k 0

x(t ) x(t )) T h f t )), x(t

h f t , x(t )  ...

−

+ + + + +
=

−

+ +
=

+ α = + β

+ β

∑

∑  

 (2.17)
Subtracting Equation (2.16) from Equation (2.17) 
we have

( )
( )

n k n k n k k n k n k

n k n k

x(t ) x T h [f t , x(t )

f t , x  ... 
+ + + + +

+ +

− = + β

−  (2.18)

If we apply mean value theorem on (3.1.10),
We have

( ) ( )

( )( )
n k n k n k n k

n k n k n k, n k

f t , x(t ) f t , x
fx t x (t )
x

+ + + +

+ + + +

− =
∂− τ
∂

Where ηn+k lies between xn k+  and x(tn+k)

Therefore

( ) ( )( )k n k n k n k n k n k
f 1 h t , x t , x T
x + + + + +
∂ − β η = … ∂ 

 

 (2.19)
Let en+k represents the error at (n+k) point, so that 
if the method is explicit βk=0 and then Tn+k=en+k 
but if the method is implicit βk≠0 and

( )k n k n k
f h t , n   
x + +
∂ β   ∂

is small then n k n k T e+ +≈

Again let

( ) ( ) ( )n kn k
1x T x
h ++τ = …  (2.20)

For us to show that the approximate solution
n 0 n{x t t b}≤ ≤ of (3.1.4) converges to the 

theoretical solution x(t) of the initial value problem
x f t x x t x= ( ) ( ) =, ; 0 0

We need to necessarily satisfy the consistency 
condition
( )

0 n
n kt t b

h max T (x) 0 as h 0   +≤ ≤
τ = → → …  (2.21)

Plus the condition that

τ h hm( ) = 0( ) , for some m ≥ …1  (2.22)

By this, we[15-17] show the only necessary and 
sufficient condition for the linear multistep (2.14) 
to be consistent is that
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k k k

j j j
j 0 j 0 j 1
 1 and j 1  
= = =

α = − α + β = …∑ ∑ ∑  (2.23)

And for Equation (2.23) above to be valid for 
all functions, x(t) is for x(t) that are m+1 times 
continuously differentiable to necessarily satisfy

k k
i 1

j j
j 0 j 1

( j) ( j) 1, i 2, m  −

= =

− α + − β = = … …∑ ∑  (2.24)

Hence, we know that

( ) ( ) ( )n k n k n k T x w T x T w+ + +α +β = α +β …  (2.25)

For all constants α,β and all differentiable 
functions x,w. We now examine the consequence 
of Equations (2.19) and (2.20) by expanding x(t) 
about tn using Taylor’s theorem and we have

 ( ) ( ) ( ) ( )
k

1
0 n m 1

j o

1x t t t  x  t R t
j +

=

= − +∑  (2.26)

Assuming x(t) is m+1 times continuously 
differentiable. Substituting into the truncation 
error

T x x t x t h F tn k n k

j

k

j n j

j

k

j n j+ +
=

+
=

+( ) = ( )− ( )+ ( )…∑ ∑
0 1

α β  

 (2.27)
And also using Equation (2.23)

( ) ( ) ( )
m 1

( j) j
n k n n k n

j 0

n k m 1

1T x x t  T ( t t )
j

T (R )

−

+ +
=

+ +

= −

+ …

∑
 (2.28)

It becomes necessary[18-20]. To calculate

T t tn k n

j

+ −( )  for j = 0

T c ±n k

j

k

j+
=

( ) = ≡ − …∑1 10

0

 (2.29)

For j≥1 we have

T t t T t tn k n

j

n k n

j

+ +− = −( ) ( )

= − + −






= …

=
+

=
+

=∑ ∑
j

k

j n k n

j

j

k

j

i

n j n

it t h t t c h
0 0

1

1

1α β( ) ( )  

 (2.30)

C j i j ij

j

k
i

j

j

k
i

j= − − + −






≥

= =

=∑ ∑1 1
0 1

1( ) ( ) ,α β

This gives

( ) ( ) ( )
m

j ( j)
n k n n k m 1

j 1

cT x h x t  T R  
j+ + +

=

= + …∑  (2.31)

And if we write the remainder Rm+1 (t) as

R t
m

t t x tm n

m m

n+
+ +( ) =

+( ) − ( )+…1

1 11

1 !
( )

Then
T R t

C

m
h x t hn k m

m m m

n

m

+ +
+ + + +( ) =
+( ) ( ) + …1

1 1 1 2

1
0

!
( )  

 (2.32)
To obtain the consistency condition (2.20), we 
need τ(h)-0(h) and this requires Tn+k (x)=0(h2).
Using Equation (2.19) with m=1, we must have 
C0, C1=0 which gives the set of Equations (2.22) 
which are referred to as consistency conditions 
in some texts. Finally to obtain (3.1.14) for 
some m≥1, we must have Tn+k (x)=0(hm+1). from 
Equations (2.30) and (2.31), this will be true if and 
only if Ci=0,i=0,1,2…m.
This proves the conditions (2.21) and completes 
the proof.
Theorem 2.3 Stability:[21-23] Assume the 
consistency condition of Equation (2.10), then the 
linear multistep method (1.2) is stable if and only 
if the following root conditions (2.11)-(2.12) are 
satisfied
The root rj < = = … …1 0 1j k, , ,  (2.33)

 r rj j= ⇒ ( ) ≠ …1 01ρ  (2.34)

Where

ρ αr r rk

j

k

j

j( ) = −−

=
∑1

0

Proof:
Given the linear multistep

x x h f a t nn k

j

k

j n j

k

k

j n j n j+
=

−

+
=

−

+ ++ + ≤ ≤ …∑ ∑
0

1

0

1

α β ;  (2.35)

With the associated characteristic polynomial

 ( )
k

k 1 j
j

j 0
P r  r r  +

=

= − α …∑  (2.36)

Such that P(1)=0 by the consistency condition. Let 
r0,…,rn denote the respective roots of P(r), repeated 
according to their multiplying and let r0=1.
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The linear multistep method 2.8. Satisfies the root 
condition if

 r j kj ≤ = … …1 0 1, , , ,  (2.37)

 r P rj j= ⇒ ( ) ≠ …1 01  (2.38)

Let Equation (2.8) be stable, we now prove that 
the root conditions (2.37) and (2.38) are satisfied. 
By contradiction let
|rj (0)|>1 for some j. This is to say we consider the 
initial value problem x1≡0;x(0)=0 with solution 
x(t)=0. So that Equation (2.8) becomes

 x x n kn k

j

k

j n j+
=

−

+= ≥ …∑
0

1

α ;  (2.39)

If we take x0=x1=…=xk=0, then the numerical 
solution clearly becomes xn=0 for all n≥0.
For perturbed initial values, let
 z z r z rn

p

0 1 1 10 0=∈ =∈ ( ) … =∈ …, , , ( )  (2.40)

And for these initial values

max ( )
0

1 0
≤ −

− ≤∈
n k

n n

p
x z r

Which is a uniform bound for all small values of 
h, since the right side is independent of h, as ∈→0, 
the bound also tend to zero.
The solution (2.12)[24-26] with the initial condition 
(2.13) is simply ( )n

n j z r  0 ;n 0=∈ ≥ . For the 

derivation from {xn}

max ( )
0≤ −

− = →
n k

n nx z N h ∝

And the bound that the method is unstable when 
|rj (0) |>0. Hence, if the method is stable, the root 
condition |rj (0) | ≤1. Must be satisfied.
Conversely, assume the root condition is satisfied, 
we now prove for stability restricted to the 
exponential equation.

 ( )1x x ;   x 0 1..= λ =  (2.41)

This[27-29] involves solution of non-homogenous 
linear difference equations which we simplify by 
assuming the roots rj (0); j=0,1,…,k to be distinct. 
The same will be true of rj (hλ) provided the values 
of h is kept sufficiently small, say 0≤h≤h0. Assume 
{xn} and {zn} to be two solutions of

( )
k 1

k 1 n k 1 j j n j
j 0

1 h  x ( h )x 0;n 1  
−

+ + + +
=

− λβ − α + λβ = ≥ …∑
 (2.42)

On Equation (2.10) on [x0, b] and assume that
 n n 00 n k

max x z  ,  0 h h
≤ −

− ≤ ∈ ≤ ≤

Introduce the error en=xn-zn and subtracting using 
(2.3.8) for each solution

( ) ( )k n k j j j k 1 n k1 h  e h e 0; x x b+ + +− λβ − α + λβ = ≤ ≤ …  

 (2.43)
The general equation becomes

 
k n

n j j
j 1

e r (h ) ;n 0  
=

= γ λ ≥∑  (2.44)

The coefficient γ0,…,γk must be chosen so that 
the solution (2.17) will then agree with the given 
initial perturbations e0,…,ek and will satisfy the 
difference Equation (2.16). Using the bound z0=∈, 
z1=∈r1 (0),…,zn=∈rj (0)p and the theory of linear 
system of equations, we have
 n 00 n k

max c  ;0 h h  
≤ −

γ ≤ ε ≤ ≤ …  (2.45)

for some constants cj>0.
To bound the solution en on [x0,b], we must bound 
each term [rj (hλ)]n to do so, consider the expansion

 U r Urj j( ) = ( ) + ( )…0 ξ  (2.46)

For some ξ between 0 and U. To compute r uj

1( ) , 
differentiate the identity

( )( ) ( )( )j jp r u u r u 0− σ =

( )( ) ( ) ( ) ( )( ) ( )( )1 1 1 1
j j j jp r cu r u u u r u r u 0 − − σ + σ = 

( ) ( )( ) ( )( ) ( )1 1 1
j j j jr u [p r u u r u (r u )− σ = σ

 ( ) ( )( )
( )( ) ( )

1
j 1

j

r u
r u

p r u ur (r u )
σ

= …
−

 (2.47)

By assumption that rj (0) is a simple root of 
p(r)=0;0≤j≤k, it follows that p1 (rj (0))=0 and by 
continuity, p1 (rj (u))≠0 for all sufficiently small 
values of u, the denominator in (2.20) is non-zero 
and we can bound rj (u)|rj (u)|=c2 for all |u|≤u0 For 
some U0≥0.

Using this with (3.3.12) and the root condition 
(3.2.4), we have

[ ]r h r c h � c hj

n

jλ λ λ( ) ≤ ( ) + ( ) ≤ + ( )0 12 2

( ) ( ) 2  h h 2
C cn n

j 2 n[r h ] [1  c h )] e  e (bxλλ ≤ + λ ≤ ≤  |λ| 

for all 0 ≤ h ≤h0.
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Combine this with Equations (2.18) and (2.19) to 
get 2c

n 2 ne   c  Max ) e (bx≤ ≤ ε  λ  for an 
approximate constant c0. This concludes the proof.

Theorem 2.4 convergence[29-31]

The linear multistep method (1.2) is said to be 
convergent if and only if it is consistent and stable.

Proof
By this, we want proof that if the consistency 
condition is assumed, the linear multistep method

k 1 k

n k j n j j n j n j
j 0 j 0

x x h f ;a t n 
−

+ + + +
= =

= α + β ≤ ≤∑ ∑  (2.48)

Is convergent if and only if the root conditions 
(2.10) and (2.11) are satisfied.
We assume first the root conditions are satisfied 
and then show the linear multistep (2.8)
Is convergent. To start, we use the problem x=0, 
x(0) =0 with the solution x (t) = 0. Then, the 
multistep method (2.8) becomes

k 1

n k j n j
j 0

 x x ,n k   
−

+ +
=

= α ≥ …∑  (2.49)

With x0,…,xk
Satisfying n (h) = max nx 0 as h 0→ → …  (2.50)

Suppose[30,31] that the not condition is violated, we 
will show that Equation (2.10) is not convergent 
to x(t)=0. Assume that some rj ( )0 1> then a 
satisfactory solution of Equation (2.11) is

( ) n
n j 0 n x h[r 0 ] ; t t b= ≤ ≤ …  (2.51)

Condition (2.10) is satisfied since 
( ) ( )jn h h(r 0) 0 as h 0= → → .

However, the solution (2.11) does not converge. 
First

Max x t x h h r t bn n j

N h

n( ) − = ≤ ≤[ ( )
( )

0 0

Consider those values of h
b

N h
= ( ) . Then, L’ 

Hospital’s rule can be used to show that
NbLim r (0)  

N
= ∞

Showing that Equation (2.11) does not converge.

Conversely assume the root condition is satisfied 
as with theorem 2.2; it is rather difficult to give 
a general proof of converge for an arbitrary 
differential equation. The present proof is 
restricted to the exponential Equation (2.14) and 
again we assume that the roots rj = 0 are distinct.
To simplify the proof, we will show that the term 
γ0 [r0 (λλ)]n in the solution

x ³ r hn

j

k

j j

n=
=
∑

0

( )λ

Will converge to the solution eλt on [0,b]. The 
remaining terms

γ λj j

n

r h j k( ) , , , ,= …1 2  are parasitic solution to 

converge to zero as h→0. Expand r0 (hλ) using 
Taylor’s theorem,

r h r h r h0 0 0

2 20 0 0λ λ( ) = ( ) + ( ) + ( )

From Equation (2.19) r0

2

1
0

1

1
( ) = ( )

( )
σ
ρ

 and using 

this consistency condition (2.11), this leads to 
r0

2 0 1( ) = .  Then

r h h h e hh

0

2 21 0 0λ λ λ( ) = + + ( ) = + ( )

[ ] [ ] [ ]r h e h e hn hn n tn

0

2 21 0 1 0λ λ λ( ) = + ( ) = + ( )
Thus

( ) n

n

t
00  t b

max [ r h ] e  0 as h 0  λλ
≤ ≤

= → → …
 (2.52)

We[30,31] must now show that the coefficient γ0→1 
as h→1. The coefficient γ0,…,γk satisfy the linear 
system

γ γ γ0 1 0+ +…+ =k x

γ λ γ λ0 0 1r h r h xk k( )  +…+ ( ) =[ ]

γ λ γ λ0 0 2r h r h x
k

k k

k( )  +…+ ( ) =[ ] ..... (2.53)

The initial values x0,…,xk are assumed to satisfy
nt

j n0  n k
r (h) max e x  0 as h 0 λ

≤ −
− → →

But this implies

 
lim 1, 0= ≤ ≤ …nx n p  (2.54)

The coefficient γ0 can be obtained using Cramer’s 
rule to solve (2.53) then
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0

1 1 k

k
k k k

0

0 1 k

k k k
k 1 k

x 1 1
x r r

  
x r r
1 1 1
r r r

   
r r r

γ =

















The denominator converges to the Vandermonde 
determinant for r0 (0)=1, r1 (0),…, rk (0); and this 
is non-zero since the roots are distinct. Using 
Equation (2.13), the numerator converges to the 
same quantity as h→0. Therefore γ→1 as h→0, 
using this, along with Equation (2.10), the solution 
{xn} converges to x(t)=eλt on [0,b]. This completes 
the proof.

ILLUSTRATIVE EXAMPLES ON 
STABILITY AND CONVERGENCE

Example 3.1

Illustrate the effect of stability using the linear 
multistep method 

( )

( ) ( )
n 2 n 1 n

n 1 n

x 1 a  x ax
1   h[ 3 a  f – 1 a f ]
2

+ +

+

= + +

= − +  with

i. a = 0
ii. a = −1
iii. a = −5 to compute numerically solutions to 
the initial value problem; x = 4tx½; x(0) = 1 in the 
interval 0≤t≤2.

Solution

p(r) = r2 – (1+a) r+a = (r−1) (r−a)
For a = 0 and −1, obviously, the method is stable 
because the stability condition (2.2.9), (2.2.10) 
is satisfied. For a = −5, we have r2+4r–5 = (r−1) 
(r+5) ⇒ r=1 and −5 but |r2| = 5>1. This violates 
the stability condition and so far a = −5 the 
linear multistep method has order 3 for a = −5 
and order 2 otherwise. The theoretical solution 
is x(t) =(1+t2)2. Let x0=1 and we also choose the 
necessary starting value x1 to coincide with the 
theoretical solution; that is x1=(1+t2)2. Then, we 
generate the solutions provided in the table below 
using h=0.1.

a = 0 ⇒ xn+2−xn+1 +
1

2
 [3fn+1 – fn]

a = −1 ⇒ xn+2−xn + 12h [fn+1]
a = −5 ⇒ xn+2−5xn−4xn+1 + 2h [2xn+1−xn]

n t Theoretical 
solution

a=0; xn a=−1; xn a=−5; xn

0 0.0 1,000,000 1,000,000 1,000,00 1,000,000

1 0.1 1,020,100 1,020,100 1,020,100 1,020,100

2 0.2 1,081,600 1,080,800 1,081,800 1,081,200

3 0.3 1,188,100 1,185,248 1,186,438 1,189,238

4 0.4 1,345,600 1,339,630 1,342,217 1,338,866

5 0.5 1,562,500 1,552,090 1,557,171 1,592,993

6 0.6 1,849,600 1,833,245 1,841,364 1,702,339

7 0.7 2,220,100 2.196,092 2,208,516 9.942,623

8 0.8 2.689,600 2.656,023 2.673,584 −27.100945

9 0.9 2.276,100 3.230,824 3.254,987

10 1.0 4.000,000 3.940,690 3.972,578

11 1.1 4.884,100 4.808,219 4.849,493

12 1.2 5.953,600 5.858,421 5.910,475

13 1.3 7.236,600 7.118,713 7.183,394

14 1.4 8.761,600 8.618,925 8.697,868

15 1.5 10.562,500 10.389,007 10.486,514

16 1.6 12.673,600 12.467,957 12.583,814

17 1.7 15.132,100 14.890,757 15.027,145

18 1.8 17.977,600 17.696,868 17.855,836

19 1.9 21.252,100 20.928,164 21.112,033

20 2.0 25.000,000 24.628,922 24.839,906

Example 3.2

Illustrate the effect of inconsistency using the 
linear multistep method xn+2−xn+1 = (3fn+1−2fn) to 

compute h
3

 a numerical solution for the initial 

value problem of example (3.1) in the interval 
0≤t≤1
Solution

Note that α2 = 1, α1= 1, α0= 0

β2 = 0, β1= 1, β0 =−
2

3

j j
j

k


0

0 1∑ = ≠

j jj
j

k

j
j

k

α β
0 0

1

3
1∑ ∑+ = ≠

Hence, the linear multistep method does not satisfy 
the consistency criteria and so is inconsistent.
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Now p(r) = r2 – r = r (r−1), so that the roots are 
r = 0 and +1 hence the linear multistep is stable. 
Therefore, example (4.5.2) is an example of an 
inconsistent stable linear multistep method.

n 2 n 1 n 1 nx  x   6( 3f –  2f )
3+ + += + h

Observe that as h→ 0, the numerical solution 
moves away from the theoretical solution.
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