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ABSTRACT
Given a normed linear space X, suppose its second dual X** exists so that a canonical injection J: X+X** 
also exists and is defined for each x ∈ X by J (x) = Øx where Øx: X**→ℝ is given by Øx (f)=˂f, x> for each 
f ∈ X* and <J (x),(f)>=˂f, x> for each f ∈ X**. Then, the mapping J is said to be embedded in X** and 
X is a reflexive Banach space in which the canonical embedding is onto. In this work, a general review 
of Kakutan’s, Helly’s, Goldstein’s theorem, and other propositions on the convex spaces was X-rayed 
before comprehensive results on uniformly convex spaces were studied, while the generalization of 
these results was discussed in section there as main result along the accompanying proofs to the result.
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REFLEXIVESPACES

A known fact is that for any normed linear space 
X, the space X* of all bounded linear functionals 
on X is a Banach space, and as a Banach space 
X* has its own dual space which we denote by 
(X*)* or simply by X** which is often referred to 
as the second dual space of X. Hence, there exists 
a canonical injection J: X+X** of X into X** 
defined for each x ∈ X by
J (x) = Øx
where Øx: X**→ℝ is given by
Øx (f)=˂f, x>
for each f ∈ X*. Thus, <J (x),(f)>=˂f, x> for each 
f ∈ X.
Note the following facts:
i. J is linear.
ii.	 ‖Jx‖=‖x‖	for	all x ∈ X meaning that J is Isometry.
In general, the map J needs not be onto, and 
consequently, we always identify X as a subspace 
of X**. Since an isometry is always a one-to-one 
map, it follows that J is an isomorphism onto J (X) 
⸦	X**. The mapping J defined above is called the 

canonical map of X into X** and the space X is 
said to be embedded in X**, hence the following 
definitions.
Definition 1.1[1]: Let X is a normed linear space 
and let J is the canonical embedding of X into 
X**. If J is onto, then X is called reflexive, that 
is, a reflexive Banach space is one in which the 
canonical embedding is onto.
Proposition 1.1[2]: Let X is a finite dimensional 
normed linear space. Then, the strong, weak and 
weak star topologies coincide.
Theorem 1.1: (Kakutan’s theorem)[3]
Let X is a Banach space. Then, X is reflexive if 
and only if

B x X xx = ∈ ≤{ }: 1

is weakly compact.
Lemma 1.1: (Helly’s theorem)[4]

Let X is a Banach space, f Xi i{ } ∈
=

∞

1

*  and 

αi i{ } ∈
=

∞

1
  fixed. Then, the following properties 

are equivalent
i. ∀ > ∃ ∈ ∋ ≤ε 0 1, x X x  and 

f x i nn n, , , ,...,< ∀ =ε 1 2
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1 2
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Lemma 1.2: (Goldstein’s theorem)[5]
Let X is a Banach space then J (Bx) is dense in 
(Bx** , w).
Lemma 1.3: Let X and Y are Banach spaces and let 
T (X,S)	→(Y,S) is a linear continuous map. Then,
T (X,w)	→(Y,w)
is continuous and conversely.
Proposition 1.2[6]: Let X is a reflexive Banach 
space and let K a closed subspace of X, then K is 
reflexive.
Corollary 1.1[7]: Let X is a Banach space, then X 
is reflexive if and only if X* is.
Corollary 1.2: Let X is a Banach space, K a closed 
bounded convex non-empty subset of X. Then, K 
is weakly compact.

UNIFORMLY CONVEX BANACH 
SPACES

Definition 2.1[8]: A subset M of a vector space X 
is said to be convex if x1, x2 ∈ M. Implies that the 
set W={v=ax1+(1-a)x2: 0≤α≤1}	is	a	subset	of	M. The 
set W is called a closed segment, while x1 and x2 are 
called the boundary points of the segment W and 
any other point of W is called the interior point of W.
Definition 2.2 (Strict Convexity)[9]
A strict convex norm is a norm such that for all x1, 
x2 of norm 1,

x x
1 2

2+ <

A normed space with such a norm is called a 
strictly convex normed space.
Definition 2.3 (Best Approximation)[9]
Let X=(X,‖•‖)	is	a	normed	space	and	suppose	that	
any given x1 ∈ X is to be approximated by a x2 ∈ Y 
where Y is a fixed subspace of X. We let δ denote 
the distance from x1 to Y. By definition
δ δ= ( ) = −∈x Y x xy Y i1 2

,
inf

Clearly δ depends on both x1 and Y which we keep 
fixed so that the simple notation δ is in order if 
there exists a x0 ∈ Y such that
x x− =0 δ

then y0 is called a best approximation to x1 out of Y.
Lemma 2.1 (Convexity)[9]
In a normed space X=(X,‖•‖),	 the	 set	M of best 
approximations to a given x1 out of a subspace Y 
of X is convex.

Lemma 2.2 (Strict Convexity)[9]
We have that
(a)	 The	Hilbert	space	is	strictly	convex
(b) The space C[a,b]	is	not	strictly	convex
Definition 2.4 (Uniformly Convex Banach 
Spaces)[10]
Let X is a Banach space, and Sr (x0), Br (x0) denote 
the sphere and the open ball, respectively, centered 
at x0 and with radius r >0.

S x x X x x r

B x x X x x r
r

r

0 0

0 0

( ) = ∈ − ={ }
( ) = ∈ − <{ }

:

:

A Banach space X is called uniformly convex if 
for any ε ∈ (0,2] there exists a δ=δ (ε)>0 such that 
if x1, x2 ∈ ε	with	‖x1‖≤1, ‖x2‖≤1	and	‖x1-x2‖≤ε, then

1

2
1

1 2
x x+( ) ≤ − δ

Definition 2.5[10]
A normed space is called strictly convex if for all 
x1, x2∈X, x1 ≠ x2 ‖x1‖=‖x2‖=1,	we	have

λ λ λx x
1 2

1 1 0 1+ −( ) < ∀ ∈( ),

Theorem 2.1.
Every inner product space H is uniformly convex.
Example 2.1: X=Lp spaces 1 < p <ꝏ	are	uniformly	
convex.
Example 2.2: ℓp (1 < p <ꝏ) is uniformly convex
Example 2.3: If X=ℓp, then for p,q>1 such that 
1 1 1
p q
+ =  and for each pair x,y ∈ X, the following 

inequalities hold
i.

1

2

1

2
2

1 2

1
1

x y x y x y

p

q q
p p p q

+( ) + −( ) ≤ +( )
≤ ≤

−
−

,

ii.

x y x y x y pp q p p p+ + + ≤ −( ) ≤ ≤ ∞−
2 2

1
,

Example 2.4: The spaces ℓ1 and ℓꝏ are not 
uniformly convex as well as the space C[a,b] 
of all real valued continuous functions on the 
compact interval [a,b] endowed with the “sup 
norm.”
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Proposition 2.1[11]:
Let X is a uniformly convex Banach space, then 
for any δ >0, ε >0 and arbitrary vectors x1, x2 ∈ 
X	with	‖x1‖≤ δ, ‖x2‖≤ δ	and	‖x1-x2‖≤ε there exists a 
δ  >0 such that

1

2
1

1 2
x x+( ) ≤ − 











δ ε
δ

δ

Proposition 2.2[11]:
Let X is a uniformly convex Banach space and 
let α ∈ (0,1) and ε >0. Then, for any δ >0, if x1, 
x2 ∈ X	 are	 such	 that	 ‖x1‖≤ δ, ‖x2‖≤ δ	 and	 ‖x1-

x2‖≤ε, then there exists δ δ ε
δ

= 




> 0  such 

that

α α δ ε
δ

α α
δ

x x
1 2

1 1 2 1+ −( ) ≤ − 





−{ }





min ,

Theorem 2.2[11]:
Every uniformly convex space is strictly 
convex.

Definition 2.6 (Convex Function)[12]
A function f: ℝn→R is said to be convex if its 
domain D (f) is a convex set and for every x1, x2 
∈ D (f),

f x x f x f xλ λ λ λ
1 2 1 2

1 1+ −( )( ) ≤ ( )+ −( ) ( )

where	0≤λ≤1.
Lemma 2.3[12]: Every convex function f with 
convex domain in ℝ is continuous.
Definition 2.7[12]:
Let X is a normed space with dim X≥2.	 The	
modulus of convexity of X is the function

δx : , ,0 2 0 1( ]→ [ ]
defined by

δ ε
ε

x

x x x x

x x
( ) =

− + = =

= −

















inf
: ;1

2
11 2

1 2

1 2

where in particular for an inner product H, we 
have

δ ε ε
H ( ) = − −1 1

4

2

Lemma 2.4[12]: Let X is a normed space with 
dim X≥2.	Then,

δ ε
ε

x

x x x x

x x

x x

( ) =
− + ≤ ≤

≤ −

















=
− +

inf
: ; ;

inf
:

1
2

1 1

1
2

1 2

1 2

1 2

1 2 xx x

x x

1 2

1 2

1 1≤ ≤

= −

















; ;

ε

This lemma implies δx (0)=0.
Lemma 2.5[12]: For every normed space X, the 
function δx (ε)/ε is decreasing on (0,2].
Theorem 2.3[12]: The modulus of convexity of 
a normed space X, δx is a convex and continuous 
function.
Theorem 2.4[12]: A normed space X is uniformly 
convex spaces of δx (ε)>0 for all ε∈ (0,2].
Theorem 2.5[12]: If X is an arbitrary uniformly 
convex space, then

δ ε ε
x ( ) ≤ −1

4

2

Theorem 2.6: (Milman Pettis theorem) [12]
If X is a uniformly convex Banach space, then X 
is reflexive.

MAIN RESULTS ON GENERALIZED 
CONVEX SPACES

Definition 3.1: (Generalized Convex Space)
From definition 2.1 above, a union of subsets 

Mi
i

n

=1


 of vector space X is said to be convex if 

y z Mi
i

n

i
i

n

i
i

n

= = −

∈
1 1 1
  

 implies that the set

W v y zi
i

n

i
i

n

i
i

n

i
i

n

= = = =

= = + −( ) ≤ ≤






1 1 1 1

1 0 1
   

α α α;

is a subset of Mi
i

n

=1


. The set Wi
i

n

=1


is called a closed 

segment while yi
i

n

=1


 and zi
i

n

=1


are called the 

boundary sets of segment Wi
i

n

=1


 and any other point 

set of Wi
i

n

=1


 is called the interior point set of Wi
i

n

=1


.

Definition 3.2: (Generalized strict convexity)
A generalized strict convex norm is a norm such 

that for all xi
i

n

=1


, yi
i

n

=1


 of norm 1,
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x y x y x yi
i

n

i
i

n

i i
i

n

i i
i

n

= = = =

+ = +( ) = + <
1 1 1 1

2
   

such a normed space is called a strictly generalized 
normed space.
Definition 3.3: (Generalized Best 
Approximation)
Let X=(X,‖•‖)	is	a	normed	space	and	suppose	that	
any given set x Xi

i

n

=

∈
1


 is to be approximated by 

a y Yi
i

n

=

∈
1


 where Y is a fixed subspace of X. We 

let δ denote the distance from xi
i

n

=1


 to Y. By 

definition
δ δ= ( ) = −∈

=

x y x yi y Y i i
i

n

i
,

inf

 

1

Clearly, δ depends on both xi
i

n

=1


and Y which we 

keep fixed so that the simple notation δ is in order. 
If there exists a y0∈Y such that

x y x yi
i

n

i
i

n

= =

− = − =
1

0 0

1

 

δ

Then, y0 is called a best approximation to xi
i

n

=1


 

out of Y.
Lemma 3.1: (Generalized Convexity)
In a normed space X=(X,‖•‖),	the	generalized	set	M 

of best approximations to a given x
i

n

1
1=


 out of a 

subspace Y of X is convex.
Lemma 3.2: (Generalized Strict Convexity)
a.	 The	Hilbert	space	is	strictly	generally	convex
b. The space C[a,b]	 is	 not	 strictly	 generally	

convex
Definition 3.4 (Uniformly Convex Banach Spaces)
Given an arbitrary Banach space X, for x0 ∈ X and 

let S xr
i

n

i 0

1

( )
=


 be the sphere centered at x0 with 

radius ri
i

n

>
=

0
1



 such that

S x x X x x rr
i

n

i
i

n

i
i

n

i
i

n

i 0

1 1

0

1 1

( ) = ∈ − =






= = = =

   

:

Then, a normed space X is called generalized 
uniformly convex if for any (0,2] there exists a 

δ δ ε= ( )
=

i i
i

n

1


 such that if x x Xi j 

, ∈  with 

x xi
i

n

j
j

n

= =
= =

1 1
1 1

 

,  and x xi j
i
j

n

i
i

n

− ≥
=
=

=1
1

1
 

ε  then

1

2
1

1
1

x xi j
i
j

n

i+( ) ≤ −( )
=
=

 

δ

We also note the following useful definition.
A generalized normed space X is uniformly convex 

if for any εi
i

n

∈( ]
=1

0 2


, , there exists 

δ δ εi
i

n

i i
i

n

= =

= ( ) >
1 1

0
 

 such that if x x Xi
i

n

j
i

n

= =

∈
1 1

 

,  

with x xi
i

n

j
j

n

≤ ≤
= =

1 1
1 1

 

,  and x xi j
i
j

i− ≥
=
=
1
1

 

ε  

then

1

2
1

1
1

1

x xi j
i
j

n

i
i

n

+( ) ≤ −( )
=
=

=
 

δ

Definition 3.5
A normed space is called strictly convex in the 

generalized sense if for all x x X x xi
i

n

j
j

n

i j
= =

∈ ≠
1 1

 

, ,

x xi
i

n

j
j

n

= =

= =
1 1

1 1
 

, , we have

λ λ λx xi j
i
j

n

+ −( ) < ∀ ∈( )
=
=

1 1 0 1
1
1



,

Theorem 3.1.
Every inner product space H is uniformly convex 
in the generalized sense.
Example 3.1: X=Lp spaces 1< p< ꝏ are uniformly 
convex in the generalized sense.
Example 3.2: The ℓp (1< p< ꝏ) is uniformly 
convex in the generalized sense.
Example 3.3: If X=ℓp, then for p,q>1 such that 

1 1 1
p q
+ =  and for each pair x x Xi

i

n

j
j

n

= =

∈
1 1

 

, ,  the 

following inequalities hold.
i.

 

1

2

1

2

2

1
1

1
1

1

1

1

x x x x

x x

i j

q

i
j

n

i j

q

i
j

n

p
i
p

j

p q

i
j

+( ) + −( )

≤ +( )
=
=

=
=

−
−

=

 

==

≤ ≤
1

1 2

n

p


,
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and

ii.

 

x x x x

x x

i j

p

i
j

n

i j

q

i
j

n

p
i
p

i
j

n

j

p

i
j

n

+ + +

≤ −


=
=

=
=

−

=
=

=
=

1
1

1
1

1

1
1

1
1

2

 

 













≤ ≤ ∞, 2 p

Example 3.4: The spaces ℓ1 and ℓꝏ are not uniformly 
convex in the generalized sense as well as the space 
C[a,b] of all real valued continuous functions on the 
compact interval [a,b] endowed with the “sup norm.”
Proposition 3.1:
Let X in the generalized sense be a uniformly 
convex Banach space, then for 

any δ εi
i

n

i
i

n

> >
= =

0 0
1 1

 

,  and arbitrary  

vectors x x Xi
i

n

j
j

n

= =

∈
1 1

 

,  with 

x x x xi
i

n

i
i

n

j
j

n

i i j
i
j

n

i
i

n

= = = =
=

=

≤ ≤ − ≥
1 1 1 1

1
1

    

δ δ ε, ,

there exists a δ >0 such that

x xi j
i
j

n

i
i

ii
i+( ) ≤ −

















=
=

=1
1

1
1

 

δ
ε
δ

δ

Proof:
For arbitrary x x Xi

i

n

j
j

n

= =

∈
1 1

 

, , let z x
di

i

n
i

i=

=
1


, 

z
x
dj

j

n
j

j=

=
1


 and set ε
ε
δi

i

n
i

ii

n

= =

=




1 1

 

 obviously, 

εi > 0


.

Moreover z zi
i

n

j
j

n

= =

≤ ≤
1 1

1 1
 

,  and

z z i
d
x xi j

i
j

n

i
i j

i
j

n
i

ii

n

− = −





≥






=

=
=

=
=

=1
1

1
1

1
  

ε
δ

ε

so that for generalized uniform convexity, we 

have, for some δ δ
ε
δi

i

n

i
i

ii

n

= =

=





>

1 1

0
 

1

2
1

11
1

z zi j i
i

n

i
j

n

−( ) ≤ − ( )( )
==

=

δ ε


that is

1

2
1

1
1

1d
x x

i
i j

i
j

i
i

n

+( ) ≤ − 









=

=
=

 

δ ε
δ

δ

which implies

1

2
1

1
1

x xi j
i
j

+( ) ≤ − 









=

=



δ ε
δ

δ

Proposition 3.2:
Let X in the general sense be a uniformly convex 

space and let α ∈ (0,1) and ε >
=

0
1i

n



. Then, for any 

δ >
=

0
1i

n



, if xi, xj ∈ X are such that 

x x x xi
i

n

i j
j

n

j i j
i
j

n

i
i

n

= = =
=

=

≤ ≤ − ≥
1 1 1

1
1

   

δ δ ε, , , then 

there exists δ δ
ε
δi

i

n

i
i

ii

n

= =

=





>

1 1

0
 

 such that

α α
δ

ε
δ

α

α
δx xi j

i
j

i

i+ −( ) ≤
−







−( )























=
=

1
1 2

1
1
1



min ,









=i 1



Theorem 3.2:
Every generalized uniformly convex space is 
strictly convex.
Definition 3.6 (Convex Function in the 
Generalized sense)

A function fi
i

n
n

=

→
1

∪ � �:  is said to be convex in 

the generalized sense if its domain D fi
i

n

=





1



 is a 

convex set and for every x x D fi
i

n

j
j

n

i
i

n

= = =

∈




1 1 1

  

, ,

f x x f x

f x

i
i
j

n

i j i i
i

i j
i
j

=
=

=

=
=

+ −( )  ≤ ( )+

−( ) ( )
1
1

1

1
1

1

1

 



λ λ λ

λ

Where	0≤λ≤1.
Lemma 3.3: Every generalized convex function 
fi

i

n

=1


 with convex domain in ℝ is continuous.
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Definition 3.6:
Let X is a normed space with dim X≥2.	 The	
generalized modulus of convexity of X is the 
generalized function

δx
i

n

=
( ]→ [ ]

1

0 2 0 1


: , ,

defined by

δ ε
ε

x i
i

n

i j

i
j

n

i
i

n

j
j

n

i
i

n

x x
x x

( ) =
−

+
= =

==

=
=

= =

=

1

1
1

1 1

1

1
2

1



  



inf

: ;

xx xi j
i
j

−

























=

=
1
1



where in particular for an inner product H, we 
have

δ ε
ε

H i
i

n i
i

n

( ) = − −
=

=

1

2

11 1
4





Lemma 3.4: Let X is a normed space with dim 
X≥2.	Then,

δ ε
ε

x i

i j

i
j

n

i
i

n

j
j

n

i
i

n

i

x x
x x

x
( ) =

−
+

≤ ≤

≤ −

=
=

= =

=

inf

; ; ;1
2

1 1
1
1

1 1

1

  



xx

x x
x

j
i
j

n

i j

i
j

n

i
i

n

=
=

=
=

=



























=

−
+

≤

1
1

1
1

1

1
2



 

inf

; 11 1
1

1 1
1

; ;x

x x

j
j

n

i
i

n

i j
i
j

=

= =
=

≤

≤ −





























 

ε

This lemma implies δx
i

n

0 0
1

( ) =
=


.

Lemma 3.5: For every normed space X, the 

generalized function δ ε εx i i
i

n

( ) 
=1


 is decreasing 

on (0,2].
Theorem 3.3: The general modulus of convexity 
of a normed space X, δx is a generalized convex 
and continuous function.
Theorem 3.4: A normed space X is a generalized 

uniformly convex spaces of δ εx i
i

n

: ( ) >
=1

0


 for all 

εi∈ (0,2]

Theorem 3.5: If X is an arbitrary uniformly 
convex space in the generalized sense, then

δ ε
ε

x i
i

n i
i

n

( ) ≤ −
=

=

1

2

11
4





Theorem 3.6: (Generalized Milman Pettis 
theorem)
If X is a uniformly convex Banach space in the 
generalized sense, then X is reflexive in the 
generalized sense.

Proof of Theorem 3.1

Recall the parallelogram law in its generalized 
sense because this will be useful in our proof. 

Hence, for each x x Hi
i

n

j
j

n

= =

∈
1 1

 

, , we have

x x x x

x x

i j
i
j

n

i j
i
j

n

i j
j

n

i

n

+ + − =
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=

=
=
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2

1
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2

1
1

2 2
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 (3.1.1)

Let εi
i

n

=

∈( ]
1

0 2


,  be given and let x x Hi
i

n

j
j

n

= =

∈
1 1

 

,  

be such that x xi
i

n

j
j

n

= =

≤ ≤
1 1

1 1
 

,  and 

x xi j
i
j

n

i
i

n

− ≥
=
=

=1
1

1
 

ε  then equation (3.1.1) yields
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2

1

4
2 2

1
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2

1
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2

1
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x x x x
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i
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n
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i
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n

i

−( ) ≤ ( ) − −
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=
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=
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i
j

i j
i
j

n

x x( ) ≤ − −( )

≤ −

=
=

=
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2

1
1

2

1
1

2

1
1

4

1

2

1
1

4

 

ε

ε

We can now choose δ εi
i

n

i

n

= − − >
= =

1 1
1

4
0

1

2

1

 

Proof of example 3.3:

Given εi
i

n

∈( ]
=

0 2
1

,


, let x x Li
i

n

j
j

n

p
= =

∈
1 1

 

,  be such 

that x xi
i

n

j
j

n

= =

≤ ≤
1 1

1 1
 

,  and x xi j
i
j

n

i
i

n

− ≥
=
=

=1
1

1
 

ε , 

two cases arises:
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Case 1: 1<p	≤2: In this case, the Helly’s theorem 
yields

1

2

1

2
2

1
1

1
1

1

1

x x x x

x x

i j

q

i
j

n

i j

q

i
j

n
q

i
p

i

n

j

p

j

+( ) + −( ) ≤

+

=
=

=
=

− −( )

=

 



==

−

− −( ) −( )





≤ =

1

1

1 1
2 2 1

n
q

q q


Thus,

1

2

1
2

1
2

1

2

1
1

1
1

x x

x x
x x

i j

q

i
j

n

i j i
q

i j
i
j

n

i

+( )

≤ −
−

≤ − 





+( )

=
=

=
=





ε
===

=

=
=

≤ − 

















11
1

1

1
1

1
2





i
j

n

i
q q

i
j

ε

So that by choosing

δ
ε

i
i

i
q q

i= =

= − − 

















>
1

1

1

1 1
2

0
 

We obtain 1

2
1

11
1

x xi j i
ii

j

n

−( ) ≤ −( )
==

=

δ


 and so Lp 

(1< p ≤2)	is	uniformly	convex	in	the	generalized	
sense.
Case 2: 2≤	p <ꝏ.	The	result	follows	as	in	case	1.
Proof of example 3.2 verification:
To see this follow the steps below:
For the space ℓ1: Consider

x

x

i
i

n

j
j

n
=

=

= ( )

= −( )
1

1

1 0 0 0

0 1 0 0

∪

∪

�

�

, , , ,

, , , ,

and take εi
i

n

=

=
1

1


 clearly x x Li
i

n

j
j

n

= =

∈
1 1

1 

, and 

x xi
i

n

j
j

n

� �∪ ∪
1 1

1 1

1 1
= =

= =,  also while 

x xi j
i
j

n

− = >
=
=

�∪
1

1
1

2 ε.  However, 

1

2
1

1
1

x xi j
i
j

n

+( ) =
=
=



 so that

1

2
1 0

111
1

x xi j i i
i

n

i

n

i
j

n

+( ) < −( ) >
===

=

δ δ,


is not satisfied showing that ℓ1 is not uniformly 
convex in the generalized sense.
For the space ℓꝏ: Consider

x

x

i
i

n

j
j

n
=

=

= ( )

= −( )
1

1

1 1 0 0

1 1 0 0

∪

∪

�

�

, , , ,

, , , ,
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i

n

=

=
1

1


 clearly x xi
i

n

j
j

n

= =
∞∈

1 1

∪ ∪ �,  and 

x xi
i

n

j
j

n

� �∪ ∪
∞ ∞= =
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1 1
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x xi j
i
j

n

− = >
∞=

=

�∪
1
1

2 ε.  However, 

1

2
1

1
1

x xi j
i
j

n

+( ) =
=
=



 so that ℓꝏ is not uniformly 

convex in the generalized sense.
For the space C[a,b]: we choose two function 

fi
i

n

=1


 and f j
j

n

=1


 as follows

f ti
i

n

i
=

( ) =
1

1


,  for all t ∈ [a,b], f t
b t
b aj j

j( ) = −
−

,  for 

each t ∈ [a,b].

Take εi
i

n

=
=

1

21



 clearly fi
i

n

=1


 and f C a bj
j

n

=

∈ [ ]
1



, ,

f fi
i

n

j
j

n

= =

= =
1 1

1
 

 and f fi j
i
j

n

− = >
=
=
1
1

1


ε . Also 

1

2
1

1
1

f fi j
i
j

n

−( ) =
=
=



 and so C[a,b] is not uniformly 

convex.
Proof of proposition 3.1:
Let εi

i=
>

1

0


 be given and let 

z x
d

z
x
di

i

n
i

ii

n

j
j

n
j

jj

n

= = = =

=






=





1 1 1 1

   

,  and suppose 
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we set ε
ε

i
i

n
i

ii

n

d= =

=




1 1

 

.  Obviously,  

moreover z zi
i

n

j
j

n

= =

≤ ≤
1 1

1 1
 

,  and 

z z
d
x x

di j
i
j

n

i
i j

i
j

− = − ≥ =
=
=

=
=

1
1

1
1

1
 

ε ε . Now by the 

generalized uniform convexity, we have
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2
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1

2
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1
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1

1
1
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d
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i
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n

i i
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i
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δ ε

δ
ε
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which implies

1

2
1

1
1

1

x x
di j

i
j

n

i
i

ii

n

+( ) ≤ −
















=
=

=
 

δ
ε

Proof of Theorem 3.6 (Milman Pettis)

It suffices to prove that map J B Bi X X
i

n

: **→
=1



 is 

subjective. So let εi
i

n

i X
i

n

J B∈ ( )
= =1 1
 

. Recall that 

J B J Bi X
i

n

i X
i

n

( ) = ( )
= =1 1
 

 hence it suffices to prove 

εi
i

n

i X
i

n

J B∈ ( )
= =1 1
 

. To prove this, it suffices to 

show that any open ball with center εi
i

n

=1


 

intersects J Bi X
i

n

( )
=1


 i.e. given any ε>0

B J Bi
i

n

i X
i

n

ε ε( ) ( ) ≠
= =1 1

0
 

 or better still 

εi
i

n

i X
i

n

x B> ∃ ∈
= =

0
1 1

,
 

 such that

ε εi i i
i

n

J x− ( ) <
=1


 (3.6.1)

We now prove (3.6.1). So let εi
i

n

>
=1

0


 be given by 

the uniform convexity of X in the general sense 
there exists δi

i

n

=

>
1

0


 such that for all 

x x Xi
i

n

j
j

n

= =

∈
1 1

 

,  with

x x x xi
i

n

j
j

n

i j
i
j

n

i
i

n

= = =
=

=

≤ ≤ − ≥
1 1 1

1
1

1 1
   

, , ε

we have
1

2
1

1
1

1

x xi j
i
j

n

i
i

n

−( ) < −( )
=
=

=
 

δ

Fix this δi
i

n

>
=

0
1



 (corresponding to the given 

εi
i

n

=1


)

Since εi
i

n

=

=
1

1


, it follows that εi
i

n

=

≠
1

0


. Hence, 

we can choose f Bi
i

n

=

∈
1


 such that fi
i

n

=

=
1

1


 and

f fi i
i

n

i
i

n

i

n

ε ε( ) =
= == 1 11

 

,  (3.6.2)

= = > −



= =

ε
δ

i
i

n
i

i

n

1 1

1 1
2

 

Set 

X x X x fi i i
i

n

i
i

n
i= ∈ −( ) <











==

**
: ,ε

δ

11 2
 

 . 

Then, X is a neighborhood of εi
i

n

=1


, the w* 

topology of X** so J Bi X
i

n

( )
=1


 is sense in BX** 

with respect to the topology w* of X**. Hence, 
any neighborhood of the w* topology of X** an 
arbitrary element of BX** must not intersect
J Bi X

i

n

( )
=1



.  In particular

X J Bi X
i

n

∩ ∪ ( )




≠

=1

0

Let x X J Bj
i

n

i X
i

n

= =

∈ ( )



1 1

∪ ∪∩  then clearly 

x J Bj i X
i

n

i

n

∈ ( )
== 11



.  Let x0 ∈ Bx be such that 

J B Xi X
i

n

( ) =
=1


 then J B Xi X
i

n

( ) ∈
=1



.  We have 

thus picked x0 ∈ Bx such that J B Xi X
i

n

( ) ∈
=1



.
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.Then, to complete the proof of (3.6.1), it now 
suffices to prove that

ε εi i
i

J x− ( ) ≤
=

0

1



We now prove (3.6.3) by contradiction. So suppose 
then

ε εi i i X
i

n

J x B∉ ( )+
=

0

1

**


Then,

ε εi i i X
i

n

i

n

J x B Y∈ ( )+ =
==

0

11

** :


the complement of J x Bi i X
i

n

0

1

( ) +



=

ε ** .


observe that since Bx** is closed, it follows that Y is 

a neighborhood of εi
i

n

=1


 in the w* w*  topology of 

X*. Hence,

X Y J Bi X
i

n

∩ ∩ ∪( ) ( )



=1

This implies that there exists x Bi
i

n

X∈
=1


 such that

J x X Yi i
i

n

( ) ∈
=1
∪ ∩

Consequently, we obtain

J x f
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f
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i
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n i i
i

n

i

n

i i
i

n0

111

0
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ε
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n

i
i

n
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i

n

i

n
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= ==
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1

1

0
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, ,ε

(since we already noted that J x Xi
i

n

0

1

( ) ∈
=


) and

f x f

J x X

i i
i

n

i

n

i i
i

n

i

n

i

i

n

i
i

n

, ,
== ==

= =

−

< ( ) ∈

11 11

1 12

 

 

ε

δ
since  






These inequalities imply

2
11 1

0 1

1

1

0

1

ε

ε
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i

n

i

n

i
i

n

i

n

i
i
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n

f f x x
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− +( )
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i

n

i i
i

n

i

n

i
i

n

i
i

n

f x f
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== = =

+ − ≤

1

11 1 1

, ,ε δ

So that

2
11 1

0

1

1

0

1

ε

δ

i i
i

n

i

n

i
i

n

i
i

n

i
i
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i
i

f f x x

f x x
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.

== = =

= =

≤ +( )

+ ≤ +( )

  



nn

i
i

n

x x
 

+ ≤ +( ) +
=

δ δ
0

1

and consequently using (3.6.2), we obtain the 
following estimate

1

2 2
1

2 2
1

0

1 11 1

1

x x fi
i

n

i i
i

n

i

n

i

n

i
i

n

i

+( ) ≥ − > −

− = −

= == =
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ε δ

δ δ δ

,

111

0

1

n

i

n

i
i

n

x x
 

= =

≤ +( ) + δ

We have the following situation x xi
i

n

0

1

1≤ ≤
=


 

and 
i

n

i ix x
=

+( ) > −( )
1

0

1

2
1

 

δ  then by uniform 

convexity (contrapositive), we have

i

n

i
i

n

ix x
= =

+( ) ≤ =
1

0

1

1

2
 

ε ε

But, then 
i

n

ix x
=

+( ) >
1

0

1

2


ε  since 
i

n

iJ x Y
=

( ) ∈
1


 

and 
i

n

iJ x Y
=

( ) ∉
1

0

 which implies

i

n

i i i i i ix x J x x J x J x
=

− = −( ) = − >
1

0 0 0  

ε

hence contradiction.

Proof of Lemma 3.5

Fix 0 2
1

< ≤
=i

n

i

η  with 
i

n

i
i

n

i
= =

≤
1 1
 

η ε  and 

i

n

i
j

n

jx x
= =1 1

 

,  in X such that 
i

n

i
j

n

jx x
= =

= =
1 1

1
 

 and 

i
j

n

i j i
i

n

x x
=
=

=

− =
1
1

1
 

ε  suffices to prove 
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δ η
η

δ ε
ε
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 (3.5.1)

Now,
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(3.5.2)

and then
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1

1 1
1 1

1
1

1 1
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X i
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By taking the infimum over all possible xi
i

n

=1


 and 

x j
j

n
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 with εi
i

n

i j
i
j

n

x x
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=
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i

n

j
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we obtain that 
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