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ABSTRACT
In this work, we discussed the solution of a chemical equilibrium problem aiming to obtain it’s fixed 
point. To do this, the preliminary and basic ideas introducing the fixed point theory were X-rayed and 
the Newton-Raphson’s iterative method for solving the system of non-linear equations discussed; then, 
the problem of the chemical equilibrium involving principal reactions in the production of synthesis 
gas by partial oxidation of methane with oxygen was stated. Using a computer program, the O reactant 
ratio that produces an adiabatic equilibrium temperature was obtained by developing a system of seven 
simultaneous non-linear equations that have the form which we now solve using the Newton-Raphson’s 
method described in section 2.2 and hence the desired fixed point of the chemical equilibrium problem.
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INTRODUCTION

(The Netwon’s Method, A Preliminary to the 
Newton-Raphson’s Iterative Method)
Let T be an operator mapping a set X into itself, a 
apoint x ∈ X is called a fixed point of T if
  x = Tx (1.1)
By (1.1), we achieve a natural construction of the 
method of successive approximations
  xn+1 = T(xn),n ≥ 0 ∈ X (1.2)
And if the sequence (xn),n ≥ 0 converges to some 
point x = x* ∈ X for some initial guess x0 ∈ X, 
where T is a continuous operator in a Banach 
space X, we have

{ }* = nlim limTxx
That is x* a fixed point the operator T. Hence, we 
now state without proof the following important 
results that make easy the understanding of the 
Newton-Raphson’s method used in this work.
Theorem 1.1A: [1,2] If T is a continuous operator 
in a Banach X,{xn} (n ≥ 0) generated by (1.2) 
converges to some point x* ∈ X for some initial 

guess x0 ∈ X and we say that x* is a fixed point of 
the operator T.
To investigate the uniqueness property, we 
introduce the concept of contraction mapping 
as follows. Let (X, d) be a metric space and T a 
mapping of X into itself. The operator T is said to 
be a contraction if there exists a real number k, 0 
≤ k ≤ 1 such that
 ‖F(x)–F(y)‖ ≤ k ‖x–y‖, for all x, y ∈ X (1.3)
Hence, every contraction mapping T is uniformly 
continuous. Indeed T is Lipschitz continuous 
with a Lipschitz constant k which may also 
be called the contraction constant for T. With 
the above, we now discuss the Banach fixed 
point extensively as related to the target of this 
research.
Theorem 1.1B: (Banach fixed point theorem 
(1922). Suppose[3,4] that
•	 We are given an operator T: M ⊆ X→M, that 

is, M is mapped into itself by T
•	 M is a closed non empty set in a complete 

metric space (X,d);
•	 T is k-contractive, that is, d (Tx,Ty) ≤ k
Then the following hold:
• Existence and uniqueness: T has exactly one 

fixed point on M
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• Convergence of the iteration: The sequence 
{xn} of successive approximations converges 
to the solution, x for an arbitrary choice of 
initial point x0 in M

• Error estimate: For all n = 0,1,2,… we have 
the prior error estimate d (xn, x) ≤ kn (1–k)-1 d 
(x0,x) and the posterior error estimate d (xn+1,x) 
≤ k(1–k)-1 d (xn,xn+1)

• Rate of convergence: For all n = 0,1,2,… we 
have d (xn+1,x) ≤ kd(xn,x)

Definition 1.1:[5,6] An operator T: M ⊆ X→X on a 
metric space (X,d) is called k-contractive if (1.3) 
holds for all x,y ∈ M with fixed k,0 ≤ k < 1, T is 
called Lipschitz continuous and if
  d (Tx,Ty)< d (x,y) (1.4)
For all x,y ∈ M with x ≠ y. T is called contractive 
for T and we obviously have the implications:
k- Contractive → Contractive → no expansive → 
Lipschitz continuous
Every Banach space (X,‖.‖) is also a complete 
metric space (X,d) as (X,d) under d (X,y)=‖x–y‖
On a Banach space, (1.3) therefore becomes
‖Tx–Ty‖≤ k‖x–y‖
Thus, the following follows
• {xn} is a Cauchy sequence. This follows from
  d (xn,xn+1) = d (Txn-1,Txn) ≤ kd (xn-1,xn) ≤ k2 d 

(xn-2,xn-1)≤⋯≤ kn d(x0,x1) (1.6)
Since X is complete, the Cauchy sequence 
converges, that is, as.[3] Equation (1.5) follows by 
letting m → ∞.
• The error estimate (1.6) follows by letting m 

→ ∞ in
d (xn+1,xn+m+1)≤ d (xn+1,xn+2)+⋯+d (xn+m-1,xn+m+1)

(k+k2+⋯+km) d (xn,xn+1) ≤ k(1–k)-1 d(xn,xn+m) (1.7)
• The point x is a solution of (1.1) for T is 

continuous by (1.4). Since T(M) ⊆ M and x0 
∈ M, we have xn ∈ M also, for all n. Since M 
is closed and xn → x as n → ∞, we get x ∈ M. 
Equation (1.2) implies that Tx = x for n → ∞.

• Equation (1.6) follows d(xn+1,x) = d (Txn,Tx) 
≤ kd (xn,x)

• Uniqueness of solution. Suppose x = Tx and 
y = Ty, the d(x,y) = d (Tx, Ty) ≤ k d (x,y) which 
forces d (x,y) = 0, that is, x = y

• Continuous dependence on a parameter
It is important to note that in many applications, 
T depends on an additional parameter P, then is 
replaced by the equation
  xp = Tp xp, xp ∈ M (1.8)
Where p ∈ P.

Proposition 1.2. (Corollary to the Theorem 
1.1A) Let[3,4] the following
• p is a metric space, called the parameter space
• For each p, the operator Tp satisfies the 

hypotheses of Theorem (1A) but with k in 
(1.3) independent of p

• For a fixed p0 ∈ P, and for all x M p p
limp p∈ →, 0

0

Then, for each p ∈ P, (1.8) has exactly one solution 
x Mp p p

limp p∈ →, 0

0

Proof. Let xp be the solution of (1.8) given by 
theorem 1.1A, then
d(xp,xp0)= d (Tp xp,Tp0 xp0)
≤d (Tp xp,Tp0 xp0)+d (Tp xp0),Tp0 xp0)
≤kd (xp,xp0)+d (Tp xp0,Tp0 xp0)
and d(xp,xp0) < (1-k)-1 d(Tp xp0,Tp0 xp0) → 0 as p → p0 
by (iii).[9]

Accelerated Convergence and Newton’s Method

We[9,10] begin with the insight which underlines 
the acceleration of iterative methods. Let x be a 
solution of the real equation X=F(x), and suppose 
the sequence of iterations (x) where
  xn+1 = f(xn) (1.9)
And xn ∈ [a,b] for all n, converges to x as n → ∞.
Now for the key: Suppose further that f is m-times 
differentiable on [a,b], with
  f’ (x) = f(2) (x) = f(m–1) = 0 (1.10)
Since xn+1=f(xn) and x = f(x), we have

  x xn a b
sup x xm

n
+ < <

−− ≤
( ) 





1 


 (1.11)

If the supremum in (1.11) is finite, we obtain the 
convergence of order m, as opposed to the linear 
convergence (m = 1) of (1.9).
Example 1.1.[10] The trick to Newton’s method 
consists of rewriting the equation f(x) = 0 in the 

equivalent form X=F(x), where f x x
f x
f x

n

n

( ) = −
( )
( )  

then the iterative method becomes

x x f x
f xn n

n

n
+ = −1

( )

( )

We assume that f’ (xn) ≠ 0 for all n then, 

f x f x
f x
f x

n
'

'
( ) = ( ) − ( )

( )2
. So that, if x is a solution 

of f(x) = 0 with f’ (x) ≠ 0, then f’ (x) = 0. Thus, we 
have a method with m = 2 in (1.1.9), that is, we 
have quadratic convergence.
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We apply this to the equation x = T(x) in (1.1.1), 
that is, f(x) = T(x). Computing, we obtain the 
iterative values xn with linear convergences.
The geometric interpretation of Newton’s methods. 
To find a zero, x of f, take the initial value, x0, and 
determine the corresponding functional value, 
f(x0). The next iterative value, x1 is the intersection 
of the tangent line at (x0,f(x0)) and the x-axis. Keep 
repeating the process, it is typical of Newton’s 
method that it converges very rapidly if the initial 
value x0 is already in the vicinity of the zero, but 
shows a better of this.
However, we know that the above-discussed fixed 
point method is just the traditional fixed point 
method that is restricted to the solution of only 
linear systems and for the purpose of this research, 
we advance onto the modified Newton’s method 
which is the Newton-Raphson’s iterative method 
here below generated for use in section three.

NEWTON-RAPHSON’S METHOD

Sections 2 and 3 are concerned with finding the 
solution, or solutions, of the system

f1 (x1,x2.,xn) = 0,
f2 (x1,x2.,xn) = 0,

     fn (x1,x2.,xn) = 0, (2.1)
Involving n real functions of the n real variables 
x1,x2,…,xn. Following the previous notation, 
x = {x1,x2,…,xn}

t, we shall write fi (x)= fi (x1,x2,…,xn) 
here, and in the subsequent development, 1 ≤ i ≤ n. 
Then let a = [a1,a2,…,an]

t be a solution of (2.1), 
that is, let fi (a) = 0.
Let the n functions fi (x) be such that
  xi=Fi (x) (2.2)
implies fi (x) = 0,1 ≤ j ≤ n. Basically, the n equations 
(2.2) will constitute a suitable rearrangement of 
the original system (2.1). In particular, let
	 	 αi= fi (α) (2.3)
Let the starting vector x0 = [x10,x20,…,xn0]

t be 
an approximation to a. Define successive new 
estimates of the solution vector, xk = [x1k,x2k…,xnk]

t, 
k = 1,2,…, by computing the individual elements 
from the recursion relations.
  xik = Fi (x1,k-1, x2,k-1,…,xn,k-1) (2.4)
Suppose there is starting R describable as |xj–aj|≤ 
h,1 ≤ j ≤ n, and for x in R there is a positive number 
μ, less than one, such that

  1
( )n i

j
j

F x
x

=
∂

Σ ≤
∂

 (2.5)

Then, if the starting vector x0 lies in R, we show 

that the iterative method expressed by (2.4) 
converges to a solution of the system (2.1), that is,
  lim x

k k→∞
=  (2.6)

Using the mean-value theorem, the truth of (2.1) 
is established by first noting from (2.3) and (2.4), 
that]

x a F x F aik i i k i− = ( )−−1 ( )

    = −
∂ + −( ) 

∂

=

−
− −Σ

j

j k j
i i k k

j

n

x
F x

x

1

1

1 1
( ),

,α
α ξ α

 (2.7)

In which 0 < ξi,k-1 < 1. that is,

 x h F
x

h hik

j

i

j

n

− ≤
∂
∂

≤ <
=

α µΣ
1

 (2.8)

Showing that the points xk lie in R. Furthermore, 
by induction, from (2.5) and (2.7),
 ( ), 1

k
ik j k jx a max x a h −− ≤ − ≤  (2.9)

Therefore, (2.6) is true, and the procedure 
converges to a solution of (2.1). Note that if Fi (x) 
are linear, we have the Newton’s method, and the 
sufficient conditions of (2.5) are the same as the 
second set of sufficient conditions controlling the 
Newton’s iteration.
For the non-linear equations, there is also a 
counterpart to the Newton’s method, previously 
discussed for the linear case. We proceed as before, 
except that some replacements are made by
X F x x x x xik i ik k i k i k n k= … …− − −( ), , , , , ,, , ,2 1 1 1  (2.10)

That is, the most recently computed elements of 
the solution vector are always used in evaluating 
the Fi. The proof of convergence according to 
(2.10) is much the same as for the Jacobi-type 
iteration. We have

x x F
xik i

j

j k j
i ik

j

n

− = −
∂
∂

=

− Σ
Σ

1

1( , )
( )

Where

∑ − =
+ − … +

( )−












−

−

x
x

xik

ik k n ik

n k n

t

α
α ξ α α ξ

α
1 1 1

1

( ), ,,

,

It will appear inductively that the above is true, 
because the various points concerned remain in R. 
If ek-1 is the largest of the numbers |xj,k-1-αj|, then

|xik-α1|≤ μ,ek-1<ek-1 < h
It follows that
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x x
F
x

x

F
xj

k ik
k

j

j

j k j

k

n

2 2 1

2 2

2

1

2 2

− = −
∂ ( )

∂
+ −( )

∂ ( )
∂

=

−  ( ) ,

Σ
Σ

Σ

Where

e
x x

xk
k k k k

n k n k n
2

1 2 1 1 2 2 2 1 2

2 1

=
+ −( ) + −( )

… + −





−

−

α ξ α α ξ α

α ξ α

, ,

, ( )

,

,










t

that is, x e e hk k k2 2 1 1− ≤ < <− −α µ

Therefore, x hik i
k− ≤α µ , and convergence 

according to (2.1) is again established.
Observe that the first of the sufficiency conditions 
of the same (2.10) has been reaffirmed under 
slightly general circumstance.

Newton-Raphson’s Iteration for Nonlinear 
Equations

The equations to be solved are again those of (2.1), 
and we retain the nomenclature of the previous 
section. The Newton-Raphson process, to be 
described, is once more iterative in character. We 
first define.

  f x
f x
xij
i

j

( ) = ∂ ( )
∂

 (2.11)

Next define the matrix ϕ(x) as
  x f x I n j ni( ) = ( )( ) ≤ ≤ ≤ ≤, ,1 1  (2.12)

Thus det (ϕ(x)) is the Jacobian of the system (2.1) 
for the vector x = [x1,x2,…,xn]

t. Now define the 
vector f(x) as
 f x f x f x f xi n

t( ) = ( ) ( ) … ( ) , , ,2  (2.13)

With these definitions in mind, and with the 
starting vector x0 = [x10,x20,…,xn0]

t, let
  xk+1 = xk + δk (2.14)
The fundamental theorem concerning convergence 
is much less restrictive than those of the previous 
sections. We have the result that if the components 
of ϕ(x) are continuous in a neighborhood of a point 
α such that f (α) = 0, if det (ϕ(α)) ≠ 0, and if x0 is 

“near” α, then 
klim

x→∞ .
An outline for a method of proof follows. By 
(2.13) and (2.14), since

 f x fi k kα δ φ α( ) = = ( ) ( ) 
−0 1,  (2.15)

By the mean – value theorem,

f x f ij x x

where
i k i

j

ik k jk

ik

n( ) − = + −( )( ) −

< <

=

∫( ) ( ),α α ξ α α

ξ

Σ
1

0 1

For the i throw of a matrix ψ use
f a x a f xi ik k in ik k1 + −( )( ) … + −( )( ) ξ α ξ α, ,

Then 
x x x x xk k k k k k+

−− = − + = − −( ) ( )[ ]( )1
1α α δ φ φ ψ α�

Since the entries in the matrix ϕ(xk)–ψ are 
differences of the type fij (xk)– fij (α+ξik (xk–α)), they 
can be kept uniformly small if the starting vector 
x0 lies in an initially chosen region R describable 
as |xi–αi|≤ h,1 ≤ i ≤ n concurrent with this is the fact 
that since det (ϕ(xk)) can be bounded from zero. 
The net result is that, for 0 < μ < 1,|xik-αj|≤ hμk,1 
≤ i ≤ n. Thus, the sequence [xk] converges to α.[6]

Example 2.1:[7-10] To illustrate the procedure, we 
use the example below, namely;

2 1
1 1 2 1 2

1( , ) sin( , ) 0
2 4 2

x xf x x x x


= − − =

2 1 2
2 1 2

1( , ) 1 ( ) 2 1 0
4

x exf x x e e ex
 

 = − − + − =  

1 2 1 2 1 1 1 2

1 1

cos( , ) cos( , )1 1,
2 2 4 2

f x x x f x x x
x x 
∂ ∂= − = − +
∂ ∂

 2 12 2

1 2

12 2 ,
2

xf f ee e
x x 
∂ ∂ = − + − =  ∂ ∂  (2.16)

The increments Δx1 and Δx2 in x1 and x2 are 
determined by
∂
∂

+ ∂
∂

= − ∂
∂

+ ∂
∂

= −f
x
x f

x
x f f

x
x f

x
x f1

1

1
1

2

2 1
2

1

1
2

2

2 2∆ ∆ ∆ ∆,

Or, writing the determinant D of the coefficient 
matrix (the Jacobian),

D f
x

f
x

f
x

f
x

= ∂
∂

∂
∂

− ∂
∂

∂
∂

1

1

2

2

1

2

2

1

Then

f f
x

f f
x

D
x

f f
x

f f
x

D

2
1

2

1
2

2
2

1
2

1

1
1

1

∂
∂

− ∂
∂

















∂
∂

− ∂
∂














,∆ 



For case in verification, detailed results are 
tabulated in Table 1, and moreover, calculations 
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were carried out using slide rule and the entries 
0.00000 showed tiny negative values.

APPLICATION OF NEWTON-
RAPHSON’S METHOD IN SOLVING THE 
CHEMICAL EQUILIBRUIM PROBLEM

The principal reactions in the production of 
synthesis gas by partial oxidation of methane with 
oxygen are

 CH O CO H
4 2 2

1

2
2+ → +  (3.1)

 CH H CO H
4 2 2

0 3+ → +  (3.2)

 H CO CO H O2 2 2+ → +  (3.3)

Write a program that finds the 0 reactant ratio 
that will produce an adiabatic equilibrium 
temperature of 2200° F at an operating pressure 
of 20 atmospheres, when the reactant gases are 
preheated to an entering temperature of 1000° F.
Assuming that the gases behave ideally, so that the 
component activities are identical with component 
partial pressures, the equilibrium constants at 
2200° F for the three equations are, respectively:

 K
P P

P P
O

CO H

CH

1

2

2

112

1 2
1 3 10= = ×

/
.  (3.4)

 K
P P
P P
CO H

CH H O
2

3

52

4 2

1 7837 10= = ×.  (3.5)

 K
P P
P P
CO H O

CO H O
3

2

2 2

2 6058= = .  (3.6)

Here, PCO, PCO2, PH2O, PCH4, and PO2 are the partial 
pressured of CO (carbon monoxide), CO2 (carbon 
dioxide), H2O (water vapor), H2 (hydrogen), 
CH4 (methane), and O2 (oxygen), respectively. 
Enthalpies of the various components at 1000°F 
and 2200°F are listed in (Table 1).

A fourth reaction may also occur at high 
temperatures: C+ CO2=2CO (3.1) at 2200°F, any 
carbon formed would be deposited as a solid; the 
equilibrium constant is given by

K P
a P

CO

c CO
4

2
5

2

1 7837 10= = ×.

Where ac is the activity of carbon in the solid state. 
Do not include reaction (3.7) in the equilibrium 
analysis. After establishing the equilibrium 
composition, considering only the homogeneous 
gaseous reactions given by (3.1), (3.2), and (3.3), 
determine the thermodynamic likelihood that 
solid carbon would appear as a result of reaction 
(3.7). Assume that the activity of solid carbon is 
unaffected by pressure and equals unity.
The use the Newton-Raphson method to solve 
the system of simultaneous non-linear equations 
developed as the result of the equilibrium analysis.

METHOD OF SOLUTION

Due to the magnitude of K, the equilibrium 
constant for reactions, the first reaction can be 
assumed to go to completion at 2200° F, that is, 
virtually no unrelated oxygen which will remain 
in the product gases at equilibrium.
Let the following nomenclature be used.
x1 Mole fraction of CO in the equilibrium mixture

x2 Mole fraction of CO2 in the equilibrium mixture

x3 Mole fraction of H2O in the equilibrium mixture

x4 Mole fraction of H2 in the equilibrium mixture

x5 Mole fraction of CH4 in the equilibrium mixture

x6 Number of moles of O2 per mole of CH2 in the feed gas

x7 Number of moles of product gases in the equilibrium mixture per

Mole of in the feed gases

Then, a system of seven simultaneous equations 
may be generated from three atom balances an 
energy balance, a mole fraction constraint, and 
two equilibrium relations.
Atom conservation balances: The number of atoms 
of each element entering equals the number of 
atoms of each clement in the equilibrium mixture.

 Oxygen x
x

x
x

: 6

1

2

3

1

2

1

2
= + +






 (3.9)

 Hydrogen x x x: 4 2 2 43 4 2= + +( )  (3.10)

 Carbon x x x:1 1 2 5= + +( )  (3.11)

Table 1: Component enthalpies in BTU/b mole
Component 1000° F 2200° F
CH4 −13492 8427

H2O −90546 −78213

CO2 −154958 −139009

CO −38528 −28837

H2 10100 18927

O2 10690 20831
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Since the reaction is to be conducted adiabatically, 
that is, no energy is added to or removed from the 
reacting gases, the enthalpy (H) of the reactants 
must equal the enthalpy of the products.
HCH x H

x x HC x H x H x HCH
F

F

4 6 2 1000

7 1 2 3 2 4 2 5 2 2200

0

0 0

0

0

+[ ]
= + + +[ ]  

   (3.12)
Mole fraction constraint.
 x x x x1 2 4 5 1+ + + + =  (3.13)

Equilibrium relations

 K p X X
x x2

2

1

3

4

3 5

51 7837 10= = ×.  (3.14)

 K X X
X X3
1 3

2 4

2 6058= = .  (3.15)

The relationships (3.14) and (3.15) follow directly 
from (3.5) and (3.6), respectively, where P is the 
total pressure and PCO = Px1, etc. In addition, there 
are five side conditions.
 x ii ≥ = …0 1 2 5, , , ,  (3.16)

These C ions more that all mole fractions in the 
equilibrium mixture are nonnegative, that is, any 
solution of equation (3.9) to 3.15) that contains 
negative mole fractions is physically meaningless 
from physical-chemical principle, there is one and 
only one solution of the equation that satisfies 
conditions (3.16). Any irrelevant solutions may be 
detected easily.
The seven equations may be rewritten in the form
 f x ii ( ) = = …0 1 2 7, , , ,  (3.17)

Where
 x x x x x x x x t= [ ]1 2 3 4 5 6 7, , , , , ,  (3.18)

As follows:

 f x x x x x
x1 1 2 3
6

7

1

2

1

2
0( ) = + + − =  (3.19a)

 f x x x x
x2 3 4 5

7

2
2

0( ) = + + − =  (3.19b)

 f x x x x
x3 1 2 5

7

1
0( ) = + + − =  (3.19c)

f x x x x

x
x

x

4 1 2 3

5

7

28837 139009 78213

8427
13492

10618927
4

( ) = − − −

+ + −+ 990 06

7

x
x

=  (3.19d)

 f x x x x x x5 1 2 3 4 5 1 0( ) = − =  (3.19e)

    f x P x x x x6

2

1 4

5

3 51 7837 10 0( ) .= − × =  (3.19f)

 f x x x x x7 1 3 2 42 6058 0( ) .= − =  (3.19g)

The system of simultaneous nonlinear equations has 
the form (2.1) and will be solved using the Newton-
Raphson method, described in section 2.2. The 
partial derivatives of above may be found by partial 
differentiation of the seven functions, fi (x) with 
respect to each of the seven variables. For example,
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The Newton-Raphson method may be summarized 
as follows:
• Choose a starting vector xk = x0 = [x10,x20,…,x70], 

where x0 is hopefully near a solution
• Solve the system of linear equations (2.14), 

ϕ(xk) δk = –f(xk) where

 ij k
j

k j
ix f

x
x( ) = ∂

∂
( ) = …

= …1
1 2 7

1 2 7, , , ,

, , ,  (3.20)

And
 f x f x f x f xk k k k

t( ) = ( ) ( ) … ( )1 2 7, , ,  (3.21)

For the increment vector
     k k k

t

k
=  1 2 7,......,  (3.22)

• Update the approximation to the root for the 
next iteration xk+1 = xk+δk

• Check for possible convergence to a root α. 
One such test might be

  δ εik i< = …2 1 2 7, , , ,  (3.23)

If (3.23) is true for all i, then xk+1 is taken to be 
the root. If test (3.23) is failed for any 1, then 
the process is repeated starting with step 2. The 
iterative process is continued until test (3.23) 
is passed for some k, or when k exceeds some 
specified upper limit. In the programs that follow, 
the elements of the augments matrix

  A x f xk k= ( ) − ( )  ,  (3.24)
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Are evaluated by a subroutine named CALCN. 
The system of linear equations (3.24) is solved by 
calling on the function SIMUL, described in detail 
in example (2.1).
The main program is a general one, in that, it is not 
specifically written to solve only the seven equations 
of interest. By properly defining the subroutine 
CALCN, the main program could be used to 
solve any system of n simultaneous non-linear 
equations. The main program reads data values for 
itmax, iprint, n, ∑1, ∑2 and x1,x2,…,xn here, itmax 
is the maximum number of Newton-Raphson’s 
iterations, print is a variable that controls printing 
of intermediate output, n is the number of nonlinear 
equations, ∑1, is the minimum pivot magnitude 
allowed in the Gauss-Jordan reduction algorithm, 
∑2, is a small positive number used in test (3.23), 
and x1,x20,…,xn0, that is, the elements of x0.
We, then, apply the FORTRAN implementation 
program as below and the underlisted computer 
outputs were generated.
FORTRAN Implementation
List of principle various program symbol (Main)
A Augmented matrix of coefficients, A (see (3.22).

DETER d, determinant of the matrix (the Jacobian).

EPS1 1, minimum pivot magnitude permitted in subroutine SIMUL

EPS2 2, small positive number, used in convergence test (3.23).

subscript, i.

IPRINT Print control variable, if iprint=1, intermediate solutions 
are printed after each iteration.

ITCON Used in convergence test (3.23). ITCON 1 if (3.23) is 
passed for all i, i=1, 2,…., n: otherwise ITCON=0.

ITER Iteration counter, k.

ITMAX Maximum number of iterations permitted, itmax.

N Number of nonlinear equations, n.

XINC Vector of increments, ik, i=1, 2, …., n.

XOLD Vector of approximations to the solution, xik.

SIMUL Function developed in Example (2.1) solves the system of 
n linear equations (2.15) for the increments,. ik i=1, 2,…, n.

(subroutine 
CALCN)

DXOLD Same as XOLD. Used to avoid an excessive number of 
reference to subroutine arguments in CALCN.

I, J, i and j, row and column subscript, respectively.

NRC N, dimension of the matrix A in the calling program. A is 
assumed to have the same number of rows and columns.

P Pressure, P, atm.

Computer Output
Results for the 1st Data Set
ITMAX = 50

IPRINT = 1

N = 7

EPS1 = 1.0E  
- 10

EPS2 = 1. 0E  
- 05

XOLD (1) XOLD 
(7)

5.000000E 
−01

0.0 0.0 5.000000E 
−01

0.0 5.000000E 
−01

2.000000E 
00

ITER = 1

DETER = −0.97077E 
−07

XOLD (1) XOLD 
(7)

2.210175E 
−01

2.592762E 
−02

6.756210E 
−02

4.263276E 
−01

2.591652E 
−01

3.3432350E
−01

1.975559E 
−00

ITER = 2

DETER = −0.10221E 
−10

XOLD (1) XOLD 
(7)

3.101482E 
−01

7.142063E 
−03

5.538273E 
−02

5.791981E 
−01

4.812878E 
−02

4.681466E
−01

2.524948E 
−00

ITER = 3

DETER = −0.41151E
−09

XOLD (1) XOLD 
(7)

3.202849E 
−01

9.554777E
−03

4.671279E 
−02

6.129664E 
−01

1.048106E 
−02

5.533223E 
−01

2.880228E 
−00

ITER = 4

DETER = −0.22807E 
−09

XOLD (1) XOLD 
(7)

3.228380E 
−01

9.22480E 
−03

4.603060E 
−02

6.180951E 
−01

3.811378E 
−03

5.758237E−01 2.974139E 
−00

ITER = 5

DETER = −0.20218E 
−09

XOLD (1) XOLD 
(7)

3.228708E 
−01

9.223551E 
−03

4.601710E 
−02

6.181716E 
−01

3.716873E 
−03

5.767141E 
−01

2.977859E 
−00

ITER = 6

DETER = −0.20134E 
−09

XOLD (1) XOLD 
(7)

3.228708E 
−01

9.223547E 
−03

4.601710E 
−02

6.181716E
−01

3.716847E 
 − 03

5.767153E 
 − 01

2.977863E 
 − 00
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Computer Output
SUCCESSFUL CONVERGENCE
ITER = 6

XOLD (1) XOLD 
(7)

3.228708E 
−01

9.223547E 
−03

4.601710E 
−02

6.181716E 
−01

3.716847E  
− 03

5.767153E  
− 01

2.97863E  
− 00

Results for the 3rd Data Set
ITMAX = 50

IPRINT = 1

N = 7

EPS1 = 1.0E 
−10

EPS2 = 1. 0E 
−05

XOLD (1) XOLD 
(7)

2.200000E 
−01

7.499999e 
−02

9.999999e 
−04

5.800000E 
−01

1.250000e 
−01

4.360000e 
−01

2.349999e 
00

ITER = 1

DETER = −0.61808E 
−08

XOLD (1) XOLD 
(7)

6.9514955E 
−01

−8.022028E 
−02

1.272939E 
−02

1.217132E 
−00

−8.447912E 
−01

1.314754E 
−00

5.969404E 
−00

ITER = 2

DETER = 0.12576E 
−09

XOLD (1) XOLD 
(7)

4.958702E 
−01

−1.698154E 
−02

5.952045E 
−03

9.518250E 
−01

−3.65007E 
−01

2.379797E 
−00

1.043425E 
−01

ITER = 3

DETER = 0.77199E 
07

XOLD (1) XOLD 
(7)

4.559822E 
−01

−9.799302E 
−04

−7.583648E
−04

9.107630E
−01

−3.650070E 
−01

2.509821E 
−00

1.107038E 
−01

ITER = 1

DETER = 0.53378−07

XOLD (1) XOLD 
(7)

4.569673E 
−01

−4.071472E 
−04

−2.142648E 
−03

9.152630E 
−01

−3.696806E 
−01

2.608933E 
00

1.149338E 
−01

ITER = 5

DETER = 0.49739E 
−07

XOLD (1) XOLD 
(7)

4.569306E 
−01

−4.071994E 
−04

−2.125205E 
−03

9.151721E 
−01

−3.695704E 
−01

2.610552E 
−00

1.150046E 
−01

ITER = 6

DETER = 0.49611E  
07

XOLD (1) XOLD 
(7)

4.569306E 
−01

−4.071984E 
−04

−2.125199E 
−03

9.151720E 
−01

−3.695703R 
−01

2.610549E  
− 00

1.150045E  
− 01

DISCUSSION OF RESULTS

Results are shown for the first and third data set 
only for the first two data sets, the Newton-Raphson 
iteration converged to the same solution, one that 
satisfies the side conditions (3.26). Results for the 
third data set cannot be physically meaningful 
because the solution has negative mole function for 
CO2, H20, and CH4. The equilibrium compositions, 
reaction ratio O2/CH4 in the feed gases, and the 
total numbers of moles of product per mole of HC4 
in the feed are tabulated in (Table 2).
Thus, the required feed ratio is 0.5767 moles of 
oxygen per moles of methane in the feed gases.
To establish if carbon is likely to be formed 
according to reaction (5.5.7) at 2200°F for a gas 
of the computed composition, it is necessary to 
calculate the magnitude of

 K P
a P

Px
a x

CO

c CO c

−
= =

2

1

2

22

 (3.25)

If K
−

 is larger than k4 from (3.25), then there will 
be a tendency for reaction (3.24) to shift toward the 
left; carbon will be formed. Assuming that ac = 1,

k k
−
= ×

×
= < =20 0 322871

1 0 009224
226 03 1329 5

2

4

( . )

.
. .   

  (3.26)
Therefore, there will be no tendency for carbon to 
form.

CONCLUSION

Results obtained from our experiment on the 
chemical equilibrium problem indicates that the 
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Newton-Raphson’s iteration method is perfectly a 
non-linear Newton’s fixed point iteration method 
in the solution of the chemical equilibrium 
problem as demonstrated in section three.
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