Asian Journal of Mathematical Sciences

RESEARCH ARTICLE

On Application of the Newton-Raphson's Fixed Point Iterative Method in the Solution of Chemical Equilibrum Problems

Eziokwu C. Emmanuel
Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Abia State Nigeria

Received: 25-05-2022; Revised: 12-06-2022; Accepted: 15-07-2022

Abstract

In this work, we discussed the solution of a chemical equilibrium problem aiming to obtain it's fixed point. To do this, the preliminary and basic ideas introducing the fixed point theory were X-rayed and the Newton-Raphson's iterative method for solving the system of non-linear equations discussed; then, the problem of the chemical equilibrium involving principal reactions in the production of synthesis gas by partial oxidation of methane with oxygen was stated. Using a computer program, the O reactant ratio that produces an adiabatic equilibrium temperature was obtained by developing a system of seven simultaneous non-linear equations that have the form which we now solve using the Newton-Raphson's method described in section 2.2 and hence the desired fixed point of the chemical equilibrium problem.

Key words: Banach contraction principle, Chemical equilibrium, Fixed point, Fortran subroutine, Newton-Raphson's iteration method, Non-linear equations
2020 Mathematics Subject Classification $\div \mathbf{6 5 K} 10$

INTRODUCTION

(The Netwon's Method, A Preliminary to the Newton-Raphson's Iterative Method)
Let T be an operator mapping a set X into itself, a apoint $x \in X$ is called a fixed point of T if

$$
\begin{equation*}
x=T x \tag{1.1}
\end{equation*}
$$

By (1.1), we achieve a natural construction of the method of successive approximations

$$
\begin{equation*}
x_{n+1}=T\left(x_{n}\right), n \geq 0 \in X \tag{1.2}
\end{equation*}
$$

And if the sequence $\left(x_{n}\right), n \geq 0$ converges to some point $x=x^{*} \in X$ for some initial guess $x_{0} \in X$, where T is a continuous operator in a Banach space X, we have

$$
x^{*}=\lim \left\{\operatorname{limTx_{n}}\right\}
$$

That is x^{*} a fixed point the operator T. Hence, we now state without proof the following important results that make easy the understanding of the Newton-Raphson's method used in this work.
Theorem 1.1A: ${ }^{[1,2]}$ If T is a continuous operator in a Banach X, $\left\{x_{n}\right\} \quad(n \geq 0)$ generated by (1.2) converges to some point $x^{*} \in X$ for some initial

Address for correspondence:

Eziokwu C. Emmanuel,
Email: okereemm@yahoo.com
guess $x_{0} \in X$ and we say that x^{*} is a fixed point of the operator T.
To investigate the uniqueness property, we introduce the concept of contraction mapping as follows. Let (X, d) be a metric space and T a mapping of X into itself. The operator T is said to be a contraction if there exists a real number $k, 0$ $\leq k \leq 1$ such that

$$
\|F(x)-F(y)\| \leq k\|x-y\|, \text { for all } x, y \in X
$$

Hence, every contraction mapping T is uniformly continuous. Indeed T is Lipschitz continuous with a Lipschitz constant k which may also be called the contraction constant for T. With the above, we now discuss the Banach fixed point extensively as related to the target of this research.
Theorem 1.1B: (Banach fixed point theorem (1922). Suppose ${ }^{[3,4]}$ that

- We are given an operator $T: M \subseteq X \rightarrow M$, that is, M is mapped into itself by T
- M is a closed non empty set in a complete metric space (X, d);
- $\quad T$ is k-contractive, that is, $d\left(T_{x}, T_{y}\right) \leq k$

Then the following hold:

- Existence and uniqueness: T has exactly one fixed point on M
- Convergence of the iteration: The sequence $\left\{x_{n}\right\}$ of successive approximations converges to the solution, x for an arbitrary choice of initial point x_{0} in M
- Error estimate: For all $n=0,1,2, \ldots$ we have the prior error estimate $d\left(x_{n}, x\right) \leq k^{n}(1-k)^{-1} d$ $\left(x_{0}, x\right)$ and the posterior error estimate $d\left(x_{n+1}, x\right)$ $\leq k(1-k)^{-1} d\left(x_{n}, x_{n+1}\right)$
- Rate of convergence: For all $n=0,1,2, \ldots$ we have $d\left(x_{n+1}, x\right) \leq k d\left(x_{n}, x\right)$
Definition 1.1: ${ }^{[5,6]}$ An operator $T: M \subseteq X \rightarrow X$ on a metric space (X, d) is called k-contractive if (1.3) holds for all $x, y \in M$ with fixed $k, 0 \leq k<1, T$ is called Lipschitz continuous and if

$$
\begin{equation*}
d\left(T_{x} T_{y}\right)<d(x, y) \tag{1.4}
\end{equation*}
$$

For all $x, y \in M$ with $x \neq y . T$ is called contractive for T and we obviously have the implications:
k - Contractive \rightarrow Contractive \rightarrow no expansive \rightarrow Lipschitz continuous
Every Banach space $(X,\| \|)$ is also a complete metric space (X, d) as (X, d) under $d(X, y)=\|x-y\|$ On a Banach space, (1.3) therefore becomes $\|T x-T y\| \leq k\|x-y\|$
Thus, the following follows

- $\left\{x_{n}\right\}$ is a Cauchy sequence. This follows from

$$
\begin{align*}
& d\left(x_{n}, x_{n+1}\right)=d\left(T x_{n-1}, T x_{n}\right) \leq k d\left(x_{n-1}, x_{n}\right) \leq k^{2} d \\
& \left(x_{n-2}, x_{n-1}\right) \leq \cdots \leq k^{n} d\left(x_{0}, x_{1}\right) \tag{1.6}
\end{align*}
$$

Since X is complete, the Cauchy sequence converges, that is, as. ${ }^{[3]}$ Equation (1.5) follows by letting $m \rightarrow \infty$.

- The error estimate (1.6) follows by letting m $\rightarrow \infty$ in
$d\left(x_{n+1}, x_{n+m+1}\right) \leq d\left(x_{n+1}, x_{n+2}\right)+\cdots+d\left(x_{n+m-1}, x_{n+m+1}\right)$
$\left(k+k^{2}+\cdots+k^{m}\right) d\left(x_{n}, x_{n+1}\right) \leq k(1-k)^{-1} d\left(x_{n}, x_{n+m}\right) \quad$ (1.7)
- The point x is a solution of (1.1) for T is continuous by (1.4). Since $T(M) \subseteq M$ and x_{0} $\in M$, we have $x_{n} \in M$ also, for all n. Since M is closed and $x_{n} \rightarrow x$ as $n \rightarrow \infty$, we get $x \in M$. Equation (1.2) implies that $T x=x$ for $n \rightarrow \infty$.
- Equation (1.6) follows $d\left(x_{n+1}, x\right)=d\left(T x_{n}, T_{x}\right)$ $\leq k d\left(x_{n}, x\right)$
- Uniqueness of solution. Suppose $x=T x$ and $y=T y$, the $d(x, y)=d(T x, T y) \leq k d(x, y)$ which forces $d(x, y)=0$, that is, $x=y$
- Continuous dependence on a parameter

It is important to note that in many applications, T depends on an additional parameter P, then is replaced by the equation

Where $p \in P$.

$$
\begin{equation*}
x_{p}=T_{p} x_{p}, x_{p} \in M \tag{1.8}
\end{equation*}
$$

We apply this to the equation $x=T(x)$ in (1.1.1), that is, $f(x)=T(x)$. Computing, we obtain the iterative values x_{n} with linear convergences.
The geometric interpretation of Newton's methods. To find a zero, x of f, take the initial value, x_{0}, and determine the corresponding functional value, $f\left(x_{0}\right)$. The next iterative value, x_{1} is the intersection of the tangent line at $\left(x_{0} f\left(x_{0}\right)\right)$ and the x-axis. Keep repeating the process, it is typical of Newton's method that it converges very rapidly if the initial value x_{0} is already in the vicinity of the zero, but shows a better of this.
However, we know that the above-discussed fixed point method is just the traditional fixed point method that is restricted to the solution of only linear systems and for the purpose of this research, we advance onto the modified Newton's method which is the Newton-Raphson's iterative method here below generated for use in section three.

NEWTON-RAPHSON'S METHOD

Sections 2 and 3 are concerned with finding the solution, or solutions, of the system

$$
\begin{align*}
& f_{1}\left(x_{1}, x_{2}, x_{n}\right)=0, \\
& f_{2}\left(x_{1}, x_{2}, x_{n}\right)=0, \\
& f_{n}\left(x_{1}, x_{2}, x_{n}\right)=0, \tag{2.1}
\end{align*}
$$

Involving n real functions of the n real variables $x_{1}, x_{2}, \ldots, x_{n}$. Following the previous notation, $x=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}^{\mathrm{t}}$, we shall write $f_{i}(x)=f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ here, and in the subsequent development, $1 \leq i \leq n$. Then let $a=\left[a_{1}, a_{2}, \ldots, a_{n}\right]^{t}$ be a solution of (2.1), that is, let $f_{i}(a)=0$.
Let the n functions $f_{i}(x)$ be such that

$$
\begin{equation*}
x_{i}=F_{i}(x) \tag{2.2}
\end{equation*}
$$

implies $f_{i}(x)=0,1 \leq j \leq n$. Basically, the n equations (2.2) will constitute a suitable rearrangement of the original system (2.1). In particular, let

$$
\begin{equation*}
\alpha_{i}=f_{i}(\alpha) \tag{2.3}
\end{equation*}
$$

Let the starting vector $x_{0}=\left[x_{10}, x_{20}, \ldots, x_{n 0}\right]^{t}$ be an approximation to a. Define successive new estimates of the solution vector, $x_{k}=\left[x_{1 k}, x_{2 k} \ldots, x_{n k}\right]^{\mathrm{t}}$, $k=1,2, \ldots$, by computing the individual elements from the recursion relations.

$$
\begin{equation*}
x_{i k}=F_{i,}\left(x_{1, p_{k-1}}, x_{\left.2 p_{k-1}, \ldots, x_{n, k-1}\right)}\right) \tag{2.4}
\end{equation*}
$$

Suppose there is starting R describable as $\left|x_{j}-a_{j}\right| \leq$ $h, 1 \leq j \leq n$, and for x in R there is a positive number μ, less than one, such that

$$
\begin{equation*}
\Sigma_{j=1}^{n}\left|\frac{\partial F_{i}(x)}{\partial x_{j}}\right| \leq \mu \tag{2.5}
\end{equation*}
$$

Then, if the starting vector x_{0} lies in R, we show
that the iterative method expressed by (2.4) converges to a solution of the system (2.1), that is,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} x_{k}=\alpha \tag{2.6}
\end{equation*}
$$

Using the mean-value theorem, the truth of (2.1) is established by first noting from (2.3) and (2.4), that]

$$
\begin{gather*}
x_{i k}-a_{i}=F_{i}\left(x_{k-1}\right)-F_{i}(a) \\
=\sum^{j=1}\left(x_{j, k-1}-\alpha_{j}\right) \frac{\partial F_{i}\left[\alpha+\xi_{i, k-1}\left(x_{k-1}-\alpha\right)\right]}{\partial x_{j}} \tag{2.7}
\end{gather*}
$$

In which $0<\xi_{i, k-1}<1$. that is,

$$
\begin{equation*}
\left|x_{i k}-\alpha\right| \leq h \sum^{j=1}\left|\frac{\partial F_{i}}{\partial x_{j}}\right| \leq \mu h<h \tag{2.8}
\end{equation*}
$$

Showing that the points x_{k} lie in R. Furthermore, by induction, from (2.5) and (2.7),

$$
\begin{equation*}
\left|x_{i k}-a\right| \leq \mu \max \left(\left|x_{j, k-1}-a_{j}\right|\right) \leq \mu^{k} h \tag{2.9}
\end{equation*}
$$

Therefore, (2.6) is true, and the procedure converges to a solution of (2.1). Note that if $F_{i}(x)$ are linear, we have the Newton's method, and the sufficient conditions of (2.5) are the same as the second set of sufficient conditions controlling the Newton's iteration.
For the non-linear equations, there is also a counterpart to the Newton's method, previously discussed for the linear case. We proceed as before, except that some replacements are made by

$$
\begin{equation*}
X_{i k}=F_{i}\left(x_{i k}, x_{2 k}, \ldots, x_{i-1, k}, x_{i, k-1}, \ldots, x_{n, k-1}\right) \tag{2.10}
\end{equation*}
$$

That is, the most recently computed elements of the solution vector are always used in evaluating the F_{i}. The proof of convergence according to (2.10) is much the same as for the Jacobi-type iteration. We have

$$
x_{i k}-\alpha_{i}=\sum^{j=1}\left(x_{j},_{k-1}-\alpha_{j}\right) \frac{\partial F_{i}\left(\Sigma_{i k}\right)}{\partial x_{j}}
$$

Where

$$
\sum x_{i k}-\alpha=\left[\begin{array}{l}
\alpha_{1}+\xi_{i k}\left(x_{1, k-1}-\alpha\right), \ldots, \alpha_{n}+\xi_{i k} \\
\left(x_{n, k-1}\right)-\alpha_{n}
\end{array}\right]^{t}
$$

It will appear inductively that the above is true, because the various points concerned remain in R. If e_{k-1} is the largest of the numbers $\left|x_{j, k-1}-\alpha_{j}\right|$, then

$$
\left|x_{i k}-\alpha_{1}\right| \leq \mu, e_{k-1}<e_{k-1}<\mathrm{h}
$$

It follows that
$x_{2 k}-\alpha_{2}=\left(x_{i k}-\alpha_{1}\right) \frac{\partial F_{2}\left(\Sigma_{2 k}\right)}{\partial x_{j}}+\sum^{j=2}\left(x_{j, k-1}-\alpha_{j}\right)$ $\frac{\partial F_{2}\left(\Sigma_{2 k}\right)}{\partial x j}$

Where
$e_{2 k}=\left[\begin{array}{l}\alpha_{1}+\xi_{2 k}\left(x_{1 k}-\alpha_{1}\right), \alpha_{2}+\xi_{2 k}\left(x_{2, k-1}-\alpha_{2}\right), \\ \ldots, \alpha_{n}+\xi_{2 k}\left(x_{n, k-1}-\alpha_{n}\right)\end{array}\right]^{t}$
that is, $\left|x_{2 k}-\alpha_{2}\right| \leq \mu e_{k-1}<e_{k-1}<h$
Therefore, $\left|x_{i k}-\alpha_{i}\right| \leq \mu^{k} h$, and convergence according to (2.1) is again established.
Observe that the first of the sufficiency conditions of the same (2.10) has been reaffirmed under slightly general circumstance.

Newton-Raphson's Iteration for Nonlinear Equations

The equations to be solved are again those of (2.1), and we retain the nomenclature of the previous section. The Newton-Raphson process, to be described, is once more iterative in character. We first define.

$$
\begin{equation*}
f_{i j}(x)=\frac{\partial f_{i}(x)}{\partial x_{j}} \tag{2.11}
\end{equation*}
$$

Next define the matrix $\phi(x)$ as

$$
\begin{equation*}
\phi(x)=\left(f_{i}(x)\right), 1 \leq I \leq n, 1 \leq j \leq n \tag{2.12}
\end{equation*}
$$

Thus det $(\phi(x))$ is the Jacobian of the system (2.1) for the vector $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{t}$. Now define the vector $f(x)$ as

$$
\begin{equation*}
f(x)=\left[f_{i}(x), f_{2}(x), \ldots, f_{n}(x)\right]^{t} \tag{2.13}
\end{equation*}
$$

With these definitions in mind, and with the starting vector $x_{0}=\left[x_{10}, x_{20}, \ldots, x_{n 0}\right]^{\text {t }}$, let

$$
\begin{equation*}
x_{k+1}=x_{k}+\delta_{k} \tag{2.14}
\end{equation*}
$$

The fundamental theorem concerning convergence is much less restrictive than those of the previous sections. We have the result that if the components of $\phi(x)$ are continuous in a neighborhood of a point α such that $f(\alpha)=0$, if $\operatorname{det}(\phi(\alpha)) \neq 0$, and if x_{0} is "near" α, then $\lim _{x \rightarrow \infty}$.
An outline for a method of proof follows. By (2.13) and (2.14), since

$$
\begin{equation*}
f_{i}(\alpha)=0, \delta_{k}=\phi^{-1}\left(x_{k}\right)[f(\alpha)] \tag{2.15}
\end{equation*}
$$

By the mean - value theorem,
$f_{i}\left(x_{k}\right)-f_{i}(\alpha)=\sum^{\substack{j=1 \\ n} i j\left(\alpha+\xi_{i k}\left(x_{k}-\alpha\right)\right)\left(x_{j k}-\alpha\right), ~}$
where $0<\xi_{i k}<1$
For the i throw of a matrix ψ use $\left[f_{i 1}\left(a+\xi_{i k}\left(x_{k}-a\right)\right), \ldots, f_{i n}\left(\alpha+\xi_{i k}\left(x_{k}-\alpha\right)\right)\right]$

Then

$$
x_{k+1}-\alpha=x_{k}-\alpha+\delta_{k}=\phi^{-1}\left(x_{k}\right)\left[\phi\left(x_{k}\right)-\psi\right]\left(x_{k}-\alpha\right)
$$

Since the entries in the matrix $\phi\left(x_{k}\right)-\psi$ are differences of the type $f_{i j}\left(x_{k}\right)-f_{i j}\left(\alpha+\xi_{\mathrm{ik}}\left(x_{k}-\alpha\right)\right)$, they can be kept uniformly small if the starting vector x_{0} lies in an initially chosen region R describable as $\mid x_{i}-\alpha_{i} \leq h, 1 \leq i \leq n$ concurrent with this is the fact that since $\operatorname{det}\left(\phi\left(x_{k}\right)\right)$ can be bounded from zero. The net result is that, for $0<\mu<1, \mid x_{i k}-\alpha_{j} \leq h \mu^{k}, 1$ $\leq i \leq n$. Thus, the sequence $\left[x_{k}\right]$ converges to $\alpha .{ }^{[6]}$
Example 2.1: ${ }^{[7-10]}$ To illustrate the procedure, we use the example below, namely;

$$
\begin{gather*}
f_{1}\left(x_{1}, x_{2}\right)=\frac{1}{2} \sin \left(x_{1}, x_{2}\right)-\frac{x_{2}}{4 \pi}-\frac{x_{1}}{2}=0 \\
f_{2}\left(x_{1}, x_{2}\right)=\left(1-\frac{1}{4 \pi}\right)\left(e^{2 x 1}-e\right)+\frac{e x_{2}}{\pi}-2 e x 1=0 \\
\frac{\partial f_{1}}{\partial x_{1}}=-\frac{1}{2} \frac{x_{2} \cos \left(x_{1}, x_{2}\right)}{2}, \frac{\partial f_{1}}{\partial x_{1}}=-\frac{1}{4 \pi}+\frac{x_{1} \cos \left(x_{1}, x_{2}\right)}{2} \\
\frac{\partial f_{2}}{\partial x_{1}}=-2 e+\left(2-\frac{1}{2 \pi}\right) e^{2 x 1}, \frac{\partial f_{2}}{\partial x_{2}}=\frac{e}{\pi} \tag{2.16}
\end{gather*}
$$

The increments Δx_{1} and Δx_{2} in x_{1} and x_{2} are determined by

$$
\frac{\partial f_{1}}{\partial x_{1}} \Delta x_{1}+\frac{\partial f_{1}}{\partial x_{2}} \Delta x_{2}=-f_{1}, \frac{\partial f_{2}}{\partial x_{1}} \Delta x_{1}+\frac{\partial f_{2}}{\partial x_{2}} \Delta x_{2}=-f_{2}
$$

Or, writing the determinant D of the coefficient matrix (the Jacobian),

$$
D=\frac{\partial f_{1}}{\partial x_{1}} \frac{\partial f_{2}}{\partial x_{2}}-\frac{\partial f_{1}}{\partial x_{2}} \frac{\partial f_{2}}{\partial x_{1}}
$$

Then

$$
\left(\frac{f_{2} \frac{\partial f_{1}}{\partial x_{2}}-f_{1} \frac{\partial f_{2}}{\partial x_{2}}}{D}\right), \Delta x_{2}\left(\frac{f_{1} \frac{\partial f_{2}}{\partial x_{1}}-f_{1} \frac{\partial f_{1}}{\partial x_{1}}}{D}\right)
$$

For case in verification, detailed results are tabulated in Table 1, and moreover, calculations

Table 1: Component enthalpies in BTU/b mole

Component	$\mathbf{1 0 0 0}^{\circ} \boldsymbol{F}$	$\mathbf{2 2 0 0}^{\circ} \boldsymbol{F}$
CH 4	-13492	8427
$\mathrm{H}_{2} \mathrm{O}$	-90546	-78213
CO_{2}	-154958	-139009
CO_{2}	-38528	-28837
H_{2}	10100	18927
O_{2}	10690	20831

were carried out using slide rule and the entries 0.00000 showed tiny negative values.

APPLICATION OF NEWTONRAPHSON'S METHOD IN SOLVING THE CHEMICAL EQUILIBRUIM PROBLEM

The principal reactions in the production of synthesis gas by partial oxidation of methane with oxygen are

$$
\begin{align*}
& \mathrm{CH}_{4}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}+2 \mathrm{H}_{2} \tag{3.1}\\
& \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2} \tag{3.2}\\
& \mathrm{H}_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \tag{3.3}
\end{align*}
$$

Write a program that finds the 0 reactant ratio that will produce an adiabatic equilibrium temperature of $2200^{\circ} \mathrm{F}$ at an operating pressure of 20 atmospheres, when the reactant gases are preheated to an entering temperature of $1000^{\circ} \mathrm{F}$. Assuming that the gases behave ideally, so that the component activities are identical with component partial pressures, the equilibrium constants at $2200^{\circ} \mathrm{F}$ for the three equations are, respectively:

$$
\begin{align*}
& K_{1}=\frac{P_{C O} P_{H_{2}}^{2}}{P_{C H} P \frac{1 / 2}{O_{2}}}=1.3 \times 10^{11} \tag{3.4}\\
& K_{2}=\frac{P_{C O} P_{H_{2}}^{3}}{P_{C H_{4}} P_{H_{2} \mathrm{O}}}=1.7837 \times 10^{5} \tag{3.5}\\
& K_{3}=\frac{P_{C O} P_{H_{2} \mathrm{O}}}{P_{C O_{2}} P_{H_{2} \mathrm{O}}}=2.6058 \tag{3.6}
\end{align*}
$$

Here, $P_{\mathrm{CO}}, P_{\mathrm{CO} 2}, P_{\mathrm{H} 2 \mathrm{O}}, P_{\mathrm{CH} 4}$, and $P_{\mathrm{O} 2}$ are the partial pressured of CO (carbon monoxide), CO_{2} (carbon dioxide), $\mathrm{H}_{2} \mathrm{O}$ (water vapor), H_{2} (hydrogen), CH_{4} (methane), and O_{2} (oxygen), respectively. Enthalpies of the various components at $1000^{\circ} \mathrm{F}$ and $2200^{\circ} \mathrm{F}$ are listed in (Table 1).

A fourth reaction may also occur at high temperatures: $\mathrm{C}+\mathrm{CO}_{2}=2 \mathrm{CO}$ (3.1) at $2200^{\circ} \mathrm{F}$, any carbon formed would be deposited as a solid; the equilibrium constant is given by

$$
K_{4}=\frac{P_{C O}^{2}}{a_{c} P_{C O_{2}}}=1.7837 \times 10^{5}
$$

Where a_{c} is the activity of carbon in the solid state. Do not include reaction (3.7) in the equilibrium analysis. After establishing the equilibrium composition, considering only the homogeneous gaseous reactions given by (3.1), (3.2), and (3.3), determine the thermodynamic likelihood that solid carbon would appear as a result of reaction (3.7). Assume that the activity of solid carbon is unaffected by pressure and equals unity.
The use the Newton-Raphson method to solve the system of simultaneous non-linear equations developed as the result of the equilibrium analysis.

METHOD OF SOLUTION

Due to the magnitude of K, the equilibrium constant for reactions, the first reaction can be assumed to go to completion at $2200^{\circ} \mathrm{F}$, that is, virtually no unrelated oxygen which will remain in the product gases at equilibrium.
Let the following nomenclature be used.

[^0]Then, a system of seven simultaneous equations may be generated from three atom balances an energy balance, a mole fraction constraint, and two equilibrium relations.
Atom conservation balances: The number of atoms of each element entering equals the number of atoms of each clement in the equilibrium mixture.

$$
\begin{align*}
& \text { Oxygen : } x_{6}=\left(\frac{1}{2 x_{1}}+x_{2}+\frac{1}{2 x_{3}}\right) \tag{3.9}\\
& \text { Hydrogen }: 4=\left(2 x_{3}+2 x_{4}+4 x_{2}\right) \tag{3.10}\\
& \text { Carbon : } 1=\left(x_{1}+x_{2}+x_{5}\right) \tag{3.11}
\end{align*}
$$

Since the reaction is to be conducted adiabatically, that is, no energy is added to or removed from the reacting gases, the enthalpy (H) of the reactants must equal the enthalpy of the products.

$$
\begin{align*}
& {\left[\mathrm{HCH}_{4}+x_{6} H 0_{2}\right]_{1000^{\circ} F}} \\
& =x_{7}\left[x_{1} H C 0_{2}+x_{3} H_{2} 0+x_{4} H_{2}+x_{5} H C H_{2}\right]_{2200^{\circ} F} \tag{3.12}
\end{align*}
$$

Mole fraction constraint.

$$
\begin{equation*}
x_{1}+x_{2}+x_{4}+x_{5}+\cdots=1 \tag{3.13}
\end{equation*}
$$

Equilibrium relations

$$
\begin{align*}
& K_{2}=\frac{p^{2} X_{1} X^{3}}{4} \tag{3.14}\\
& x_{3} x_{5} \tag{3.15}
\end{align*}=1.7837 \times 10^{5} .
$$

The relationships (3.14) and (3.15) follow directly from (3.5) and (3.6), respectively, where P is the total pressure and $P_{C O}=P x_{1}$, etc. In addition, there are five side conditions.

$$
\begin{equation*}
x_{i} \geq 0, i=1,2,5, \ldots \tag{3.16}
\end{equation*}
$$

These C ions more that all mole fractions in the equilibrium mixture are nonnegative, that is, any solution of equation (3.9) to 3.15) that contains negative mole fractions is physically meaningless from physical-chemical principle, there is one and only one solution of the equation that satisfies conditions (3.16). Any irrelevant solutions may be detected easily.
The seven equations may be rewritten in the form

$$
\begin{equation*}
f_{i}(x)=0, i=1,2, \ldots, 7 \tag{3.17}
\end{equation*}
$$

Where

$$
\begin{equation*}
x=\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right]^{t} \tag{3.18}
\end{equation*}
$$

As follows:

$$
\begin{gather*}
f_{1}(x)=\frac{1}{2} x_{1}+x_{2}+\frac{1}{2} x_{3}-\frac{x_{6}}{x_{7}}=0 \tag{3.19a}\\
f_{2}(x)=x_{3}+x_{4}+2 x_{5}-\frac{2}{x_{7}}=0 \tag{3.19b}\\
f_{3}(x)=x_{1}+x_{2}+x_{5}-\frac{1}{x_{7}}=0 \tag{3.19c}\\
f_{4}(x)=-28837 x_{1}-139009 x_{2}-78213 x_{3} \\
+18927 x_{4}+8427 x_{5}+\frac{13492}{x_{7}}-10690 \frac{x_{6}}{x_{7}}=0 \tag{3.19d}
\end{gather*}
$$

$$
\begin{gather*}
f_{5}(x)=x_{1} x_{2} x_{3} x_{4} x_{5}-1=0 \tag{3.19e}\\
f_{6}(x)=P^{2} x_{1} x_{4}-1.7837 \times 10^{5} x_{3} x_{5}=0 \tag{3.19f}\\
f_{7}(x)=x_{1} x_{3}-2.6058 x_{2} x_{4}=0 \tag{3.19g}
\end{gather*}
$$

The system of simultaneous nonlinear equations has the form (2.1) and will be solved using the NewtonRaphson method, described in section 2.2. The partial derivatives of above may be found by partial differentiation of the seven functions, $f_{i}(x)$ with respect to each of the seven variables. For example,

$$
\begin{gathered}
\frac{\partial f_{1}}{\partial x_{1}}=\frac{1}{2}, \frac{\partial f_{1}}{\partial x_{4}}=0, \frac{\partial f_{1}}{\partial x_{7}}=\frac{x_{6}}{x_{7}} \\
\frac{\partial f_{1}}{\partial x_{21}}=1, \frac{\partial f_{1}}{\partial x_{5}}=0, \\
\frac{\partial f_{1}}{\partial x_{3}}=\frac{1}{2}, \frac{\partial f_{1}}{\partial x_{6}}=-\frac{1}{x_{7}},
\end{gathered}
$$

The Newton-Raphson method may be summarized as follows:

- Choose a starting vector $x_{k}=x_{0}=\left[x_{10}, x_{20}, \ldots, x_{70}\right]$, where x_{0} is hopefully near a solution
- Solve the system of linear equations (2.14), $\phi\left(x_{k}\right) \delta_{k}=-f\left(x_{k}\right)$ where

$$
\begin{equation*}
\left.\phi_{i j}\left(x_{k}\right)=\frac{\partial f_{1}}{\partial x_{j}}\left(x_{k}\right)\right)_{, j=1,2, \ldots, 7}^{i=1, \ldots, 7} \tag{3.20}
\end{equation*}
$$

And

$$
\begin{equation*}
f\left(x_{k}\right)=f_{1}\left(x_{k}\right), f_{2}\left(x_{k}\right), \ldots, f_{7}\left(x_{k}\right)^{t} \tag{3.21}
\end{equation*}
$$

For the increment vector

$$
\begin{equation*}
\delta_{k}=\left[\delta_{1 k} \delta_{2 k, \ldots, \delta_{\gamma_{k}}}\right]^{t} \tag{3.22}
\end{equation*}
$$

- Update the approximation to the root for the next iteration $x_{k+1}=x_{k}+\delta_{k}$
- Check for possible convergence to a root α. One such test might be

$$
\begin{equation*}
\left|\delta_{i k}\right|<\varepsilon_{2}, i=1,2, \ldots, 7 \tag{3.23}
\end{equation*}
$$

If (3.23) is true for all i, then x_{k+1} is taken to be the root. If test (3.23) is failed for any 1 , then the process is repeated starting with step 2 . The iterative process is continued until test (3.23) is passed for some k, or when k exceeds some specified upper limit. In the programs that follow, the elements of the augments matrix

$$
\begin{equation*}
A=\left[\phi\left(x_{k}\right),-f\left(x_{k}\right)\right] \tag{3.24}
\end{equation*}
$$

Are evaluated by a subroutine named CALCN. The system of linear equations (3.24) is solved by calling on the function SIMUL, described in detail in example (2.1).
The main program is a general one, in that, it is not specifically written to solve only the seven equations of interest. By properly defining the subroutine CALCN, the main program could be used to solve any system of n simultaneous non-linear equations. The main program reads data values for itmax, iprint, $n, \sum 1, \sum 2$ and $x_{1}, x_{2}, \ldots, x_{n}$ here, itmax is the maximum number of Newton-Raphson's iterations, print is a variable that controls printing of intermediate output, n is the number of nonlinear equations, $\sum 1$, is the minimum pivot magnitude allowed in the Gauss-Jordan reduction algorithm, $\sum 2$, is a small positive number used in test (3.23), and $x_{1}, x_{20}, \ldots, x_{n 0}$, that is, the elements of x_{0}.
We, then, apply the FORTRAN implementation program as below and the underlisted computer outputs were generated.

FORTRAN Implementation

List of principle various program symbol (Main)	
A	Augmented matrix of coefficients, A (see (3.22).
DETER	d, determinant of the matrix (the Jacobian).
EPS1	1, minimum pivot magnitude permitted in subroutine SIMUL
EPS2	2 , small positive number, used in convergence test (3.23). subscript, i.
IPRINT	Print control variable, if iprint $=1$, intermediate solutions are printed after each iteration.
ITCON	Used in convergence test (3.23). ITCON 1 if (3.23) is passed for all $\mathrm{i}, \mathrm{i}=1,2, \ldots$, n : otherwise $\operatorname{ITCON}=0$.
ITER	Iteration counter, k .
ITMAX	Maximum number of iterations permitted, itmax.
N	Number of nonlinear equations, n.
XINC	Vector of increments, ${ }_{\text {ik }}$, $\mathrm{i}=1,2, \ldots$. , n .
XOLD	Vector of approximations to the solution, ${ }_{\text {xik }}$.
SIMUL	Function developed in Example (2.1) solves the system of n linear equations (2.15) for the increments,. ${ }_{\text {ik }} \mathrm{i}=1,2, \ldots, \mathrm{n}$.
(subroutine CALCN)	
DXOLD	Same as XOLD. Used to avoid an excessive number of reference to subroutine arguments in CALCN.
I, J,	i and j , row and column subscript, respectively.
NRC	N , dimension of the matrix A in the calling program. A is assumed to have the same number of rows and columns.
P	Pressure, P, atm.

Computer Output

Results for the $\mathbf{1}^{\text {st }}$ Data Set		
ITMAX	$=$	50
IPRINT	$=$	1
N	$=$	7
EPS1	$=$	1.0 E
		-10

EPS2	$=$	$\begin{aligned} & 1.0 \mathrm{E} \\ & -05 \end{aligned}$		
XOLD (1)	XOLD (7)			
$\begin{aligned} & 5.000000 \mathrm{E} \\ & -01 \end{aligned}$		0.0	0.0	$\begin{gathered} 5.000000 \mathrm{E} \\ -01 \end{gathered}$
0.0		$\begin{gathered} 5.000000 \mathrm{E} \\ -01 \end{gathered}$	$\begin{gathered} 2.000000 \mathrm{E} \\ 00 \end{gathered}$	
ITER	$=$	1		
DETER	$=$	$\begin{gathered} -0.97077 \mathrm{E} \\ -07 \end{gathered}$		
XOLD (1)	XOLD (7)			
$\begin{aligned} & 2.210175 \mathrm{E} \\ & -01 \end{aligned}$		$\begin{gathered} 2.592762 \mathrm{E} \\ -02 \end{gathered}$	$\begin{gathered} 6.756210 \mathrm{E} \\ -02 \end{gathered}$	$\begin{gathered} 4.263276 \mathrm{E} \\ -01 \end{gathered}$
$\begin{aligned} & 2.591652 \mathrm{E} \\ & -01 \end{aligned}$		$\begin{gathered} 3.3432350 \mathrm{E} \\ -01 \end{gathered}$	$\begin{gathered} 1.975559 \mathrm{E} \\ -00 \end{gathered}$	
ITER	$=$	2		
DETER	=	$\begin{gathered} -0.10221 \mathrm{E} \\ -10 \end{gathered}$		
XOLD (1)	XOLD (7)			
$\begin{aligned} & 3.101482 \mathrm{E} \\ & -01 \end{aligned}$		$\begin{gathered} 7.142063 \mathrm{E} \\ -03 \end{gathered}$	$\begin{gathered} 5.538273 \mathrm{E} \\ -02 \end{gathered}$	$\begin{gathered} 5.791981 \mathrm{E} \\ -01 \end{gathered}$
$\begin{aligned} & 4.812878 \mathrm{E} \\ & -02 \end{aligned}$		$\begin{gathered} 4.681466 \mathrm{E} \\ -01 \end{gathered}$	$\begin{gathered} 2.524948 \mathrm{E} \\ -00 \end{gathered}$	
ITER	$=$	3		
DETER	$=$	$\begin{gathered} -0.41151 \mathrm{E} \\ -09 \end{gathered}$		
XOLD (1)	XOLD (7)			
$\begin{aligned} & 3.202849 \mathrm{E} \\ & -01 \end{aligned}$		$\begin{gathered} 9.554777 \mathrm{E} \\ -03 \end{gathered}$	$\begin{gathered} 4.671279 \mathrm{E} \\ -02 \end{gathered}$	$\begin{gathered} 6.129664 \mathrm{E} \\ -01 \end{gathered}$
$\begin{aligned} & 1.048106 \mathrm{E} \\ & -02 \end{aligned}$		$\begin{gathered} 5.533223 \mathrm{E} \\ -01 \end{gathered}$	$\begin{gathered} 2.880228 \mathrm{E} \\ -00 \end{gathered}$	
ITER	$=$	4		
DETER	$=$	$\begin{gathered} -0.22807 \mathrm{E} \\ -09 \end{gathered}$		
XOLD (1)	XOLD (7)			
$\begin{aligned} & 3.228380 \mathrm{E} \\ & -01 \end{aligned}$		$\begin{gathered} 9.22480 \mathrm{E} \\ -03 \end{gathered}$	$\begin{gathered} 4.603060 \mathrm{E} \\ -02 \end{gathered}$	$\begin{gathered} 6.180951 \mathrm{E} \\ -01 \end{gathered}$
$\begin{aligned} & 3.811378 \mathrm{E} \\ & -03 \end{aligned}$		$5.758237 \mathrm{E}-01$	$\begin{gathered} 2.974139 \mathrm{E} \\ -00 \end{gathered}$	
ITER	$=$	5		
DETER	=	$\begin{gathered} -0.20218 \mathrm{E} \\ -09 \end{gathered}$		
XOLD (1)	XOLD (7)			
$\begin{aligned} & 3.228708 \mathrm{E} \\ & -01 \end{aligned}$		$\begin{gathered} 9.223551 \mathrm{E} \\ -03 \end{gathered}$	$\begin{gathered} 4.601710 \mathrm{E} \\ -02 \end{gathered}$	$\begin{gathered} 6.181716 \mathrm{E} \\ -01 \end{gathered}$
$\begin{aligned} & 3.716873 \mathrm{E} \\ & -03 \end{aligned}$		$\begin{gathered} 5.767141 \mathrm{E} \\ -01 \end{gathered}$	$\begin{gathered} 2.977859 \mathrm{E} \\ -00 \end{gathered}$	
ITER	$=$	6		
DETER	$=$	$\begin{gathered} -0.20134 \mathrm{E} \\ -09 \end{gathered}$		
XOLD (1)	XOLD (7)			
$\begin{aligned} & 3.228708 \mathrm{E} \\ & -01 \end{aligned}$		$\begin{gathered} 9.223547 \mathrm{E} \\ -03 \end{gathered}$	$\begin{gathered} 4.601710 \mathrm{E} \\ -02 \end{gathered}$	$\begin{gathered} 6.181716 \mathrm{E} \\ -01 \end{gathered}$
$\begin{aligned} & 3.716847 \mathrm{E} \\ & -03 \end{aligned}$		$\begin{gathered} 5.767153 \mathrm{E} \\ -01 \end{gathered}$	$\begin{gathered} 2.977863 \mathrm{E} \\ -00 \end{gathered}$	

AJMS/Jul-Sep-2022/Vol 6/Issue 3

Computer Output				
SUCCESSFUL CONVERGENCE				
ITER	$=$	6		
XOLD (1)	XOLD (7)			
3.228708 E		9.223547 E	4.601710E	6.181716E
-01		-03	-02	-01
3.716847 E		5.767153E	2.97863 E	
-03		-01	-00	
Results for the 3 ${ }^{\text {rd }}$ Data Set				
ITMAX	$=$	50		
IPRINT	$=$	1		
N	=	7		
EPS1	=	$\begin{gathered} 1.0 \mathrm{E} \\ -10 \end{gathered}$		
EPS2	$=$	$\begin{aligned} & \text { 1. } 0 \mathrm{E} \\ & -05 \end{aligned}$		
XOLD (1)	XOLD (7)			
$\begin{aligned} & 2.200000 \mathrm{E} \\ & -01 \end{aligned}$		$\begin{gathered} 7.499999 \mathrm{e} \\ -02 \end{gathered}$	$\begin{gathered} 9.999999 \mathrm{e} \\ -04 \end{gathered}$	$\begin{gathered} 5.800000 \mathrm{E} \\ -01 \end{gathered}$
$\begin{aligned} & 1.250000 \mathrm{e} \\ & -01 \end{aligned}$		$\begin{gathered} 4.360000 \mathrm{e} \\ -01 \end{gathered}$	$\begin{gathered} 2.349999 \mathrm{e} \\ 00 \end{gathered}$	
ITER	$=$	1		
DETER	=	$\begin{gathered} -0.61808 \mathrm{E} \\ -08 \end{gathered}$		
XOLD (1)	$\begin{aligned} & \text { XOLD } \\ & (7) \end{aligned}$			
$\begin{aligned} & 6.9514955 \mathrm{E} \\ & -01 \end{aligned}$		$\begin{gathered} -8.022028 \mathrm{E} \\ -02 \end{gathered}$	$\begin{gathered} 1.272939 \mathrm{E} \\ -02 \end{gathered}$	$\underset{-00}{1.217132 \mathrm{E}}$
$\begin{aligned} & -8.447912 \mathrm{E} \\ & -01 \end{aligned}$		$\begin{gathered} 1.314754 \mathrm{E} \\ -00 \end{gathered}$	$\begin{gathered} 5.969404 \mathrm{E} \\ -00 \end{gathered}$	
ITER	=	2		
DETER	$=$	$\begin{gathered} 0.12576 \mathrm{E} \\ -09 \end{gathered}$		
XOLD (1)	XOLD (7)			
$\begin{aligned} & 4.958702 \mathrm{E} \\ & -01 \end{aligned}$		$\underset{-02}{-1.698154 \mathrm{E}}$	$\begin{gathered} 5.952045 \mathrm{E} \\ -03 \end{gathered}$	$\begin{gathered} 9.518250 \mathrm{E} \\ -01 \end{gathered}$
$\begin{aligned} & -3.65007 \mathrm{E} \\ & -01 \end{aligned}$		$\begin{gathered} 2.379797 \mathrm{E} \\ -00 \end{gathered}$	$\begin{gathered} 1.043425 \mathrm{E} \\ -01 \end{gathered}$	
ITER	$=$	3		
DETER	=	$\begin{gathered} 0.77199 \mathrm{E} \\ 07 \end{gathered}$		
XOLD (1)	XOLD (7)			
$\begin{aligned} & 4.559822 \mathrm{E} \\ & -01 \end{aligned}$		$\underset{-04}{-9.799302 \mathrm{E}}$	$\begin{gathered} -7.583648 \mathrm{E} \\ -04 \end{gathered}$	$\underset{-01}{9.107630 \mathrm{E}}$
$\begin{aligned} & -3.650070 \mathrm{E} \\ & -01 \end{aligned}$		$\begin{gathered} 2.509821 \mathrm{E} \\ -00 \end{gathered}$	$\begin{gathered} 1.107038 \mathrm{E} \\ -01 \end{gathered}$	
ITER	$=$	1		
DETER	$=$	0.53378-07		
XOLD (1)	$\begin{aligned} & \text { XOLD } \\ & (7) \end{aligned}$			
$\begin{aligned} & 4.569673 \mathrm{E} \\ & -01 \end{aligned}$		$\underset{-04}{-4.071472 \mathrm{E}}$	$\begin{gathered} -2.142648 \mathrm{E} \\ -03 \end{gathered}$	$\begin{gathered} 9.152630 \mathrm{E} \\ -01 \end{gathered}$
$\begin{aligned} & -3.696806 \mathrm{E} \\ & -01 \end{aligned}$		$\begin{gathered} 2.608933 \mathrm{E} \\ 00 \end{gathered}$	$\begin{gathered} 1.149338 \mathrm{E} \\ -01 \end{gathered}$	
ITER	=	5		

DETER	$=$	$\begin{gathered} 0.49739 \mathrm{E} \\ -07 \end{gathered}$		
XOLD (1)	XOLD (7)			
$\begin{aligned} & 4.569306 \mathrm{E} \\ & -01 \end{aligned}$		$\begin{gathered} -4.071994 \mathrm{E} \\ -04 \end{gathered}$	$\begin{gathered} -2.125205 \mathrm{E} \\ -03 \end{gathered}$	$\begin{gathered} 9.151721 \mathrm{E} \\ -01 \end{gathered}$
$\begin{aligned} & -3.695704 \mathrm{E} \\ & -01 \end{aligned}$		$\begin{gathered} 2.610552 \mathrm{E} \\ -00 \end{gathered}$	$\begin{gathered} 1.150046 \mathrm{E} \\ -01 \end{gathered}$	
ITER	$=$	6		
DETER	=	$\begin{gathered} 0.49611 \mathrm{E} \\ 07 \end{gathered}$		
XOLD (1)	XOLD (7)			
$\begin{aligned} & 4.569306 \mathrm{E} \\ & -01 \end{aligned}$		$\begin{gathered} -4.071984 \mathrm{E} \\ -04 \end{gathered}$	$\begin{gathered} -2.125199 \mathrm{E} \\ -03 \end{gathered}$	$\begin{gathered} 9.151720 \mathrm{E} \\ -01 \end{gathered}$
$\begin{aligned} & -3.695703 \mathrm{R} \\ & -01 \end{aligned}$		$\begin{gathered} 2.610549 \mathrm{E} \\ -00 \end{gathered}$	$\begin{gathered} 1.150045 \mathrm{E} \\ -01 \end{gathered}$	

DISCUSSION OF RESULTS

Results are shown for the first and third data set only for the first two data sets, the Newton-Raphson iteration converged to the same solution, one that satisfies the side conditions (3.26). Results for the third data set cannot be physically meaningful because the solution has negative mole function for $\mathrm{CO}_{2}, \mathrm{H}_{2} 0$, and CH_{4}. The equilibrium compositions, reaction ratio $\mathrm{O}_{2} / \mathrm{CH}_{4}$ in the feed gases, and the total numbers of moles of product per mole of HC_{4} in the feed are tabulated in (Table 2).
Thus, the required feed ratio is 0.5767 moles of oxygen per moles of methane in the feed gases.
To establish if carbon is likely to be formed according to reaction (5.5.7) at $2200^{\circ} \mathrm{F}$ for a gas of the computed composition, it is necessary to calculate the magnitude of

$$
\begin{equation*}
\bar{K}=\frac{P_{C O}^{2}}{a_{c} P_{C O}}=\frac{P x_{1}^{2}}{a_{c} x_{2}} \tag{3.25}
\end{equation*}
$$

If \bar{K} is larger than k_{4} from (3.25), then there will be a tendency for reaction (3.24) to shift toward the left; carbon will be formed. Assuming that $a_{c}=1$,
$\bar{k}=\frac{20 \times(0.322871)^{2}}{1 \times 0.009224}=226.03<k_{4}=1329.5$

Therefore, there will be no tendency for carbon to form.

CONCLUSION

Results obtained from our experiment on the chemical equilibrium problem indicates that the

Tables 2: Equilibrium gas mixture

x_{1}	Mole fraction CO	0.322871
x_{2}	Mole fraction CO_{2}	0.009224
x_{3}	Mole fraction H_{O}	0.046017
x_{4}	Mole fraction H 2	0.618172
x_{5}	Mole fraction CH_{4}	0.003717
x_{6}	Mole fraction $\mathrm{O}_{2} / \mathrm{CH}_{4}$	0.576715
x_{7}	Total moles of product	2.977863

Newton-Raphson's iteration method is perfectly a non-linear Newton's fixed point iteration method in the solution of the chemical equilibrium problem as demonstrated in section three.

REFERNCES

1. Alefeld G, Potra FA, Shen Z. On the existence theorems of Kontorovich, more and Mirands, Comput Suppl 2001;15:21-8.
2. Ames W. Nonlinear Ordinary Differential Equations in

Transport Processes. New York: Academic Press; 1968.
3. Agyros IK. On an interative algorithon for solving non linear equations beritrage zir. Numerschen Math 19981;1:83-92.
4. Agyros IK. Some generalized projection methods for solving operator equations. J Comput Appl Math 1992;39:1-6
5. Ralston A, Wilf HS. Mathematical Methods for Digital Computers. New York: Wiley; 1960.
6. Carnahan B, Luther HA, James WO. Applied Numerical Methods. Sydney, Toronto: John Wiley and Sons in Cooperated;1975.
7. Jenkins FA, White HE. Fundamentals of Optics. $2^{\text {nd }}$ ed. United States: McGraw-Hill Education; 1951.
8. Traub RF. Iterative Methods for the Solution of Equations. New Jessey: Prentice-Hall, Eagle Wood Cliffa; 1964.
9. Ortega JM, Rheinboldt WC. Iterative Solution of non Linear Equations in Several Variable. New York: Academic Press; 1970.
10. Rall LB. Computational Solution of non Linear Operator Egns. New York: Wiley; 1968.

[^0]: x_{1} Mole fraction of $C O$ in the equilibrium mixture
 x_{2} Mole fraction of CO_{2} in the equilibrium mixture
 x_{3} Mole fraction of $\mathrm{H}_{2} \mathrm{O}$ in the equilibrium mixture
 x_{4} Mole fraction of H_{2} in the equilibrium mixture
 x_{5} Mole fraction of CH_{4} in the equilibrium mixture
 x_{6} Number of moles of O_{2} per mole of CH_{2} in the feed gas
 $x_{7} \quad$ Number of moles of product gases in the equilibrium mixture per Mole of in the feed gases

