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ABSTRACT
Within the frame work of planar steady-state filtration of incompressible fluid according to Darcy’s 
law, an exact analytical solution of the problem of flow in a rectangular cofferdam with a screen in 
the presence of evaporation from the free surface of groundwater is given. The limiting cases of the 
considered motion – filtration in unconfined reservoir to imperfect gallery, as well as the flow in the 
absence of evaporation – are noted.
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INTRODUCTION

The solution of the problem of fluid inflow 
to an imperfect well with aflooded filter (i.e., 
axisymmetric problem) in the exact hydrodynamic 
formulation is associated with great mathematical 
difficulties (especially for flows with a free surface) 
and is not available so far[1-6] (numerous numerical 
and approximate solutions are not considered 
here). Therefore, as a first approximation to 
the solution of this problem, its flat analogues 
– problems about fluid flow to a rectangular 
cofferdam with a screen and to an imperfect 
rectilinear gallery – were considered,[1,5-8] which 
give a certain qualitative insight into the possible 
dependence of filtration characteristics on the 
degree of well imperfection. Exact analytical 
solution of the problem of groundwater movement 
in unconfined reservoir to imperfect gallery in 
presence of evaporation from free surface is given 
in work.[9] As well as an approximate solution of 
the problem in the case, when the flow area on the 
left is limited by some equipotential defined from 
the solution. It is shown that the flow pattern near 
the impermeable screen significantly depends not 
on lyon the imperfection of the gallery, but also 

on the presence of evaporation, which strongly 
affects the flow rate of the gallery and the ordinate 
of the exit point of the depression curve on the 
impermeable wall.
The presented work gives an exact solution of 
the filtration problem in a rectangular cofferdam 
with a screen in the presence of evaporation from 
the free surface of ground water. In this case, as 
well as in[9] (unlike in[7,8]) in the area of the flow 
velocity, hodograph appears not rectilinear, but 
circular polygons, which does not allow using 
the classical Christoffel-Schwarz formula. The 
effect of evaporation from the free surface is 
studied using the method of P.Y. Polubarinova-
Kochina.[1-6] Using the methods of conformal 
mapping of circular polygons developed for 
special form regions,[10-13] the mixed multi 
parameter boundary value problem of the theory 
of analytic functions is solved. Taking in to 
account, the characteristic features of the flow 
under consideration makes it possible toobta in 
the solution through helementary functions, which 
makes their use the simplest and most convenient. 
The results of numerical calculations are given 
and hydrodynamic analysis of the in fluenceo 
fall physical parameters of the model on filtration 
characteristics is given. Obtained results of plane 
problem solution give at least some qualitative 
insight into dependence of flow parameters on 
degree of well (ortube well) imperfection.
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MATERIALS AND METHODS

Figure 1 shows a rectangular jumper with slopes 
A0 A1 and D0 B0 nanim permeable horizontal bed 
of length L. The height of water in the upstream 
reservoir is H, the downstream reservoir with water 
level H1, having a partially impermeable vertical 
wall CD0 (screen), is adjacent to the bottom of 
the reservoir. If the working part of the cofferdam 
CB (filter) of width H1 is flooded, that is, H2>H1, 
there is no draw down gapusual for dams.[1] The 
upper boundary of the region of motion is the free 
surface AD overlooking the impermeable screen 
CD0, from which there is uniform evaporation of 
intensity ε (0 < ε <1). The ground is considered 
homogeneous and isotropic; the fluid flow obeys 
the Darcy law with known filtration coefficient 
k = const.
Let us introduce a complex potential of motion 
ω = φ + iψ, where the velocity potential, the 
current function and the complex coordinate are 
referred to kН, where H1 is the head at point A. At 
the choice of the coordinate system indicated in 
Figure 1 and coincidence of the head comparison 
plane with the plane y = 0 at the boundary of 
the filtration region, the following boundary 
conditions are fulfilled:
AD: φ = -y, ψ = -εx + Q; DC: x = 0, ψ = Q;

CB: x = 0, φ = -H2; BA1: y = 0, ψ = 0; 
   A1A: φ = -H, x=-L. (1)
The task is to determine the position of the free 
surface AD and to find the ordinate H0 of the exit 
point of the depression curve on the screen, as 
well as the filtration flow rate ω.
To solve the problem, we use the method of P.Y. 
Polubarinova-Kochina, which is based on the 
application of the analytic theory of the Fuchs class 
linear differential equations.[1,6,14]. We introduce 

an auxiliary canonical variable ζ and functions: 
z (ζ) conformally mapping the upper half-plane 
ζ>0 to the flow region z under the correspondence 
of points ζD = 0, ζE = e,ζA = 1,ζA1 = a1, ζB = b, (a1, 
b are unknown affixes of points A1andBinthe 
plane ζ), ζC = ∞, and functions d ω/dζand dz/dζ. 
We emphasize that, compared to,[9] an additional 
boundary angular singular point A1 appears here in 
the flow region z, which complicates the solution 
considerably.
By determining the characteristic indices of 
the functions dω/dζ and dz/dζ near regular 
singular points,[1,6,14] we find that they are linear 
combinations of two branches of the following R 
iemann function: [1,6,14]
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Where 2arctgv = . The last Riemann 
symbol corresponds to the following Fuchs class 
linear differential equation with four regular 
singular points:
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It is well known[1-6,14] that difficulties of principle 
character arise during integration of equations 
of this kind. They are caused by the fact that the 
coefficients of equation (3) besides the uncertain 
affixes also contain an additional, so called 
accessory parameter λ, also unknown beforehand, 
and so far there is no effective way of their actual 
finding.
Let us turn to the region of the complex velocity 
w corresponding to the boundary conditions 
(1), which is depicted in Figure 2. This region, 
which is a circular quadrilateral ABCDE with a 
cut with a vertex at point E (corresponding to the 
inflection point of the depression curve) and an 

Figure 1: Flow pattern in a rectangular cofferdam with a 
screen, calculated at ε =0.5, H=3, L =2, H1=1, H2=1.4
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angle νπ at thevertex A, belongs to the class of 
circular polygons in polar meshes and was studied 
earlier.[13] It is important to emphasize that such 
areas, despite their particular form, however, are 
very typical and typical for many problems of 
underground hydromechanics: Infiltration from 
canals, irrigator sand reservoirs, in fresh water 
currents over resting saline waters, and in problems 
of Zhukovsky sheet flowing in the presence of 
saline retaining waters (for example,[11-15]).
Replacing the variables ζ = th2t translates the 
upper half-plane ζ into the horizontal half-plane 
Ret >0, 0< Im t<0.5π of the parametric plane t in 
agreement with the points

1

1 1
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arcth (1 ),
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and the Y integrals of equation (3), which were 
constructed by the method,[13] transforms to the 
form

1 1 2 1Y
t vt C t vt

t Y
t vt C t vt

tv v= + = +
+ +

ch ch sh ch

ch

ch sh sh ch

ch
, , 

 (4)
Where C (C≠1) is an unknown fitting constant.
Taking in to account relation (2) and considering 
that w= d ω/d ζ, we arrive at the dependencies we 
are looking for
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Where M > 0 is the scale constant of the simulation.
One can check that the functions (5) satisfy the 
boundary conditions (1) reformulated in terms 
of the functions dω/dt and dz/dt and, thus, are 
the parametric solution of the original boundary 
value problem. Writing representations (5) for 
different parts of the half-belt boundary followed 
by integration over the whole contour of the area 
of the parametric variable t leads to the closure 
of the flow area and, thus, serves to control the 
calculations.

RESULTS

As a result, we get expressions for the following 
values: the width L of the cofferdam, the water 
levels in the upper H and lower H2 pools, and the 
length H1 of the filter
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Of the required coordinates of the free surface 
points AD
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And expressions for the filtration flow rate Q and 
the free surface exit point ordinate
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b
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∞
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Other expressions for Q, H0 and L are used to 
control the calculations
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Figure 2: Area of complex velocity w
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As well as the expression
0.5 arcth
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t dt t dt t dt
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Directly derived from the boundary conditions (1).
In formula (5)-(10), the integrand functions are 
expressions of the right-hand sides of equations 
(3) on the corresponding parts of the contour of 
the auxiliary region t.
Limit cases
1. At L→∞, that is, at the junction of points A1 

and A, in plane t, that is, at a1→1 (arcth a1 = ∞), 
the cofferdam degenerates in to a semi-in 
finite left-handed unconfined formation. 
Thus, the exact solution of groundwater flow 
to the imperfect gallery, studied earlier,[9] is 
obtained.

2. At ԑ→0, that is, at small values of evaporation 
intensity the results of works[7,8] are obtained.

Representations (5) - (10) contain four unknown 
constants M, C, a1 and b. The parameters a1, b 
(1<a1<b < ∞), C (C ≠ 1) are determined from 
equations (6) for the given values H1, H2 (H1≤ 
H2<H), and L, while the simulation constant M 
is found from the second equation (6) fixing the 
water level H in the headwater of the cofferdam. 
After determination of the unknown constants 
the filtration flow rate Q and the ordinate H0 
of the outlet point of the depression curve on 
the impermeable section DC by formulas (8) 
and coordinates of points of free surface DA by 
formulas (7) are sequentially found.
Figure 1 shows the flow pattern calculated 
at ε = 0. 5, H = 3, L = 2, H1= 1.0, H2= 1.4 
(basecase[9]). Results of calculations of influence 
of defining physical parameters ε, H, H1, H2, and 
L on values Q and H0 are presented in Tables 1 
and 2. On Figures 3 and 4 dependences of flow 
Q (curves 1) and ordinate H0 of a point of an exit 
of a depression curve on a screen (curves 2) from 
parameters H1 and H2 are submitted. Analysis of 
calculations of the se tables and graphs allows us 
to draw the following conclusions:
•	 Decrease of intensity of evaporation ε and 

increase of head H accompany increase of 
flow Q and ordinate H0 of the exit point of 
depression curve on the screen

•	 Decrease of the screen depth h1 and increase 
of the water level in the downstream h2 are 
accompanied by a decrease of the flow Q and 
increase of the ordinate H0

Table 1: Results of calculations of Q and H0 values when 
varying ε, H and L
ε Q H0 H Q H0 L Q H0

0.1 1.3937 2.3003 2.5 0.5624 1.4074 1.5 1.6261 2.1424

0.2 1.3423 2.1544 3.0 1.1554 1.7750 1.7 1.3492 1.8970

0.3 1.2839 2.0179 3.5 1.5715 2.0883 2.0 1.1554 1.7755

0.4 1.2218 1.8920 4.5 2.6811 3.3097 2.5 0.7585 1.5045

0.5 1.1554 1.7755 5.0 2.9726 3.7528 2.9 0.4863 1.3727

Table 2: Results of calculations of Q and H0 values when 
varying H1 and H2

H1 Q H0 H2 Q H0

0.9 1.1120 1.8292 1.09 1.3965 1.5533

1.0 1.1554 1.7755 1.19 1.3627 1.5775

1.1 1.1928 1.7161 1.29 1.2425 1.7051

1.2 1.2235 1.6494 1.39 1.1598 1.7695

1.3 1.2460 1.5728 1.40 1.1634 1.7694

•	 As the width of the coffer dam L increases, 
the flow rate Q and the ordinate H0 of the free 
surface exit point to the screen decrease.

From Table 2 and Figures 3 and 4 follows that 
decrease of parameters H1 and H2 by 1.5 and 
1.3 times, respectively, leads to change of Q value 
by 16.8% (at fixing H1) and 12% (at fixing H2). 
The marked regularities lead to the conclusion 
that the cofferdam flow rate depends on the value 
of level lowering to a somewhat greater extent 

Figure 4: Dependence of the cofferdam flow rate Q and 
the ordinate H0 of the free surface outlet point on the water 
level in the down streamer servoir H2

Figure 3: Dependence of the cofferdam flow rate Q and the 
ordinate H0 of the free surface outlet point H0 on the filter 
length H1
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than on the filter length (or on imperfection of a 
well or a well).
For the base case, almost all the dependences of Q 
and H0 on the parameters ε, H, H1, H2, and L are 
close to linear.
Comparison of the exact values obtained for the 
base case Q = 1.155 and H0 = 1.776 with the 
approximate values Q = 1.141 and H0 = 1.768 
for the base case[9] where the flow area to the left 
was limited by the equipotential shows that the 
relative error of the calculations is rather small 
and amounts to only 0.5 and 1.3% respectively.
Comparison of exact value of flow Q = 1.16, 
obtained for basic variant, with approximate 
value Q =1.26, which follows at application of 
generalized formula of I.A. Charny [1, p. 267] for 
usual rectangular cofferdam (without screen) in 
the presence of evaporation

Q L H H
L

= − + −
2 2

2

2

2

,

Leads to an error of 8.3%.
For comparison with data H=1, H1=0.05, 
H2=0.238, L=4 work[7] at absence of evaporation, 
that is, at ε = 0, for which values Q = 0.118, 
H0=0.29 are received by the approximate formulas 
in semi-inverse formulation, we consider variant ε 
= 0.1, H=1, H1=0.05, H2=0.238, L=4, leading to 
exact values Q = 0.42, H0 = 0.75. Here, relative 
calculation errors are 71 and 61%, respectively. 
Consequently, Just as in,[9] evaporation 
significantly affects the flow pattern.

CONCLUSION

The method for construction of exact analytical 
solution of a problem about movement of liquid 
in a rectangular cofferdam with a screen in the 
presence of evaporation from a free surface 
of ground waters has been developed. The 
investigation shows that the filtration scheme 
in a rectangular cofferdam with impermeable 
screen, firstly, is very similar to the previously 
considered[9] problem about movement of ground 
waters to the imperfect gallery, one of them being 
limiting with respect to the other. Second, the 
flow pattern near the screen essentially depends 
not only on the filter size, but also on the presence 
of evaporation, which strongly affects the flow 
rate value and the ordinate of the outlet point of 
the depression curve on the screen. The obtained 
results, announced in,[16] give so meidea (at 

least qualitatively) about possible dependence 
of motion characteristics when considering the 
filtration problem already to imperfect well or 
tubular well.
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