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ABSTRACT 

 
Use of differential operators in geometric function theory has been become a topic for a lot of 

investigation in recent years. These investigations considered to be important because the generalized 

many results studied by various research. One of the most beautiful classical problems in geometric 

function theory is radius of star likeness and radius of convexity. In this work,
 
we determined radius of 

star likeness and convexity for the class  


,S  defined by generalized differential operator  zfRDn

, . 

On the other hand, we used the computer software like (Wolfram Alfa Program– Complex Tool Program) 

for graph some special cases.   
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INTRODUCTION  

 

Let T  denote the class of function  zf  defined by  
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Which are univalent and analytic in the open unite disc  
 1:  zzU

 . 

 

Definition 1.1:  The class of starlike function of order µ denote by  *S  if    Tzf   and satisfies the 

condition 
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Definition 1.2 : The class of convex function of order µ denote by  C  if   Tzf   and satisfies the 

condition  
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Note that   ** 0 SS   is the class of starlike functions and   CC 0  is the class of convex functions. 

Ruscheweyh [5] defined the differential operator 
 zfRn

 as follows 
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where 
  UzNNn  ,00 

and  
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Al-Oboudi  [2] defined  the differential operator  
 zfDn

   by: 
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Lupas [3] defined the generalized differential operator  
 zfRDn

,  as linear combination of Ruscheweyh 

operator and Al-Oboudi differential operator by: 

       zfDzfRzfRD nnn

   1, .                                                                    (1.7) 

By simple calculate, we have 

          k

k

k

nn zaknkzzfRD 





2

, ,111 

.                                                                   (1.8)  

From equation (1.7), we note that  

   zfzzfRD n
1

,                                                                                                                                 (1.9) 

Now, by taking different value of the parameters ,,n  and  , we get some special cases of the operator 

 zfRD n

 ,  , for example. 

 

i. 
   zfDzfRD nn

 1,  studied by Al-Oboudi [2]; 

ii. 
 zfSRD nn 1,1 , studied by Sâlâgean [6]; 

iii. 
   zfRzfRD nn 0, , studied by Ruscheweyh  [5]. 

 

In 2014, Lupas and Andrei [4] use the generalized differential operator 
 zfRDn

,  to define the class 

 
nS ,  , which consists of all function   Tzf    satisfies the condition 
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where 
 zfRDn

,  given by (1.8) .  

By specializing the parameters ,,n  and  , in the definition of the class 
 

nS ,  can be reduced know 

classes  : 
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i.   
   

 TS 0

,   studied by Silverman [7]; 

ii.  
    CS 1

,  studied by Silverman [7]; 

iii.  
    

 SS n

0,  studied by Ahuja [1]; 

iv. Put  0 ,   we get the class defined as follows:  

v. 
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vi. Put 1 and   1 , we get the class defined as follows 

vii. 
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. 

 

The problem of coefficient estimates is one of interesting problems which was studied by researchers for 

certain classes in the open unit disc. Closely related to this problem Using the results of  Lupas  and  

Andrei  [4] to determine radius of star likeness and radius of convexity details with some application of 

computers software . 

 

RADII OF STARLIKENESS AND CONVEXITY 

 

In order to prove our results, we need the following Lemma due to Lupas and Andrei [4] : 

 

Lemma 2.1: 

Let the function  zf defined by (1.1) belong to the class T , if  
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 then
   

nSzf ,
, where 10   and  kn,  defined by (1.5). The result is sharp for the function 
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Now we study radius of starlikeness for the function   Tzf   belong to the classes 
 

nS ,  by obtaining 

the coefficient estimates. 

 

Theorem 2.1: 

Let the function  zf  given by (1.1) be in the class 
 

nS , ,then  zf  is starlike of order  10    

in 
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 , where 
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The result is sharp for the function  zf defined by (2.2). 

       

Proof 

 

To find the radius of starlike of order α, it sufficient to show that  
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By simple calculations, we get 
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Thus equation (2.4) satisfies if 
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Since 
   

nSzf ,
, Lemma 2.1 conforms that 
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hence, from (2.6) and (2.7), we have 
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Solving (2.8) for 
z

, we get 
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Thus, the proof of Theorem 2.1 is completed. 

Put 0n  in Theorem 2.1, we get the following corollary 

 

Corollary 2.1:  

Let the function   zf  defined by (1.1) be in the class  T , Then   zf   is starlike  in  
 ,,2 krz 

, 

where 
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The result is sharp for the function 
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Put 3k  in Corollary 2.1, we get 

 

 

Example 2.1: Let the function  
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                                                                                                                         (2.12) 

be in the class  T , Then  zf  is starlike in  
 ,3rz 

, where 
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In Figure 1, graph  radius of starlike in the above example by Wolfram Alpha.  

                                                                                                               

 
 

Figure-1, radius of starlike function defined by (2.12)   

 

Put 0  in Theorem 2.1, we get the following  corollary: 

 

Corollary 2.2  

Let the function   zf  given by (1.1) be in the class 
 

S
, then   zf   is starlike  in  
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The result is sharp for the function 
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Put 3k  in Corollary 2.2, we get the following example:  

 

Example 2.2: Let the function  zf  defined by (2.12) be in the class 
 

S
, then  zf  is stalike in  

 ,,5 nrz 
, where 
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The result is sharp for the function  
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Theorem 2.2: 

 

 Let 
   

nSzf ,
. Then  zf  is convex of order  10    in 

  ,,,,.,6 knrz 
 , where 
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The result is sharp for the function 
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Proof: 

By using the same technique which used in the proof of Theorem 2.1, we can show that  
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which give the assertion of Theorem 2.2. 

Put 0n  in Theorem 2.2, we get the following corollary 

 

Corollary 2.3: 

 

Let the function   zf  given by (1.2) be in the class  T , then   zf   is convex of order  10    in 
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The result is sharp for the function 
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Put 2k  and 0 in Corollary 2.3, we get 

 

Example 2.3: Let the function defined by (2.12) be in the class 
T , then  zf  is convex in  

 8rz 
, 

where 
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The result is sharp for the function 
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In figure 2 , graph the sharp function in Example 2.3 by Complex Tool program  
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Figure 2: the image of unit disc under the function (2.23) 

 

Put 3k  in Corollary 2.3, we get 

Example 2.4: Let the function defined by (3.12) be in the class  T , then  zf  is convex in  

 ,9rz 
, where 
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The result is sharp for the function 
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In Figure 3, graph  the radius of convex in the above Example  by Wolfram Alfa program, we get  

 
Figure 3: radius of convex function defined by (2.25) 

 

Put 0  in Corollary 2.3, we get the following corollary 

 

Corollary 2.4 

Let the function   zf  given by (1.1) be in the class  T , Then   zf   is convex  in  
 ,9 krz 

,  
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The result is sharp for the function  zf  given by (2.21). 

 

RESULT 

 
The result in Corollary 2.4 given the known result of Silverman [7, Theorem 8] 
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CONCLUSION 
 

This work is a generalization for well-known radius problem of univalent functions and gave some 

examples. 
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