

RESEARCH ARTICLE

ON SERIES OF INEQUALITIES VIA VARIOUS ITERATION SCHEMES WITH SELF AND CONTRACTION MAPPINGS IN BANACH SPACE UNDER LIMITING CONDITIONS

***Rohit Kumar Verma**

**Associate Professor, Department of Mathematics,Bharti Vishwavidyalaya, Durg, C.G., India*

Corresponding Email: rohitkverma73@rediffmail.com

Received: 12-04-2023; Revised: 21-05-2023 ; Accepted: 14-07-2023

ABSTRACT

Through iterative procedures, our aim is to connect the different inequalities and fixed-point issues arising from self, contractive and non-expansive mappings in Banach spaces in this communication. We offer an iterative technique for resolving the fixed-point issues and various inequalities under study. We demonstrate how well the suggested approach converges.

Keywords:Non-expansive mapping,Continuous mappings,Self mappings, Banach spaces,Fixed point theory etc.

INTRODUCTION

Let T be the self-map defined on X in the metric space (X, D) . Making the premise that the set of fixed points for T is represented by $F(T) = \{ z \in X : Tz = z \}$. The sequence $\{x_n\}_{n=0}^{\infty}$ for $x_0 \in X$. The Picard iteration, defined as $x_{n+1} \in Tx_n$, $n \ge 0$, is used in mathematics. The sequence $\{x_n\}_{n=0}^{\infty}$ defines $x_{n+1} =$ $(1 - \alpha_n)x_n + \alpha_n Tx_n, n \ge 0$ for the value of $\{\alpha_n\}_{n=0}^{\infty}$. This sequence appears in (0, 1). The Mann iteration process [6] is denoted by the notation $\sum_{n=0}^{\infty} \alpha_n = \infty$. In addition to studying iteration and fixed point non-expansive mapping in Banach space in 1976, Ishikawa [4, 5] discovered fixed points using a new iteration method.

In 2000, Noor [7] introduced the following iteration scheme for arbitrary chosen $x_1 \in C$ construct the sequence $\{x_n\}$ by

$$
x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n
$$

\n
$$
y_n = (1 - \beta_n)x_n + \beta_n T z_n
$$

\n
$$
z_n = (1 - \gamma_n)x_n + \gamma_n T x_n
$$

For all $n \ge 1$ Where $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ are sequences in (0, 1).

www.ajms.in

Later, in 2014, Abbas et al. [1] offered the iteration below, where a sequence $\{x_n\}$ is created from randomly selected $x_1 \in C$ by

$$
x_{n+1} = (1 - \alpha_n) T y_n + \alpha_n T z_n
$$

\n
$$
y_n = (1 - \beta_n) T x_n + \beta_n T z_n
$$

\n
$$
z_n = (1 - \gamma_n) x_n + \gamma_n T x_n
$$

Definition 1.1 Let H be a non-empty subset of X , a Banach space. Let T once more be the self-map established on X. Consequently, T is said to mean non-expansive if $||Tu - Tv|| \leq p||u - v|| +$ $||u - Tv|| \forall u, v \in H$ and $p, q: p + q \leq 1$. The inverse of this relation, that is, that a mean non-expansive mapping may not be a non-expansive mapping, is often untrue. Every non-expansive mapping is a mean non-expansive mapping with $p = 1$ and $q = 0$. We have thought about the generalized version of mean non-expansive mapping by taking into account $||Tu - Tv|| \leq p||u - v|| + q||u - Tv|| \forall u, v \in Hand$ $p, q: p + q < 1.$

Definition 1.2 For some initial approximation $x_0 \in H$ consider the following sequence

$$
x_{n+1} = T\left(\frac{x_n + y_n}{2}\right),
$$

$$
y_n = (1 - \alpha_n)x_n + \alpha_n T\left(\frac{x_n + y_n}{2}\right),
$$

 x_0 is the initial approximation such that $x_0 \in H$ and $\{\alpha_n\}_{n=0}^{\infty} \in [0, 1]$.

Definition 1.2 For some initial approximation $x_0 \in H$ consider the following sequence

$$
x_{n+1} = T\left(\frac{x_n + y_n}{2}\right),
$$

$$
y_n = (1 - \delta)x_n + \delta T\left(\frac{x_n + y_n}{2}\right),
$$

 x_0 is the initial approximation such that $x_0 \in H$ and $\delta \in [0, 1]$. The definitions of the rate of convergence that follow are credited to Berinde [2].

Definition 1.3 Let $\{\alpha_n\}$ and $\{\beta_n\}$ be two sequences of real numbers converging to α and β respectively. If $\lim_{n\to\infty} \left\| \frac{\alpha_n - \alpha}{\beta_n - \beta} \right\|$ $\left\| \frac{a_n - a}{\beta_n - \beta} \right\| = 0$, then $\{\alpha_n\}$ converges faster than $\{\beta_n\}$.

Definition 1.4 Suppose that for two fixed-point iteration processes $\{u_n\}$ and $\{v_n\}$, both converging to the same fixed point w, the error estimates $||u_n - w|| \le p_n$ and $||v_n - w|| \le q_n$ for all $n \ge 1$, are available where $\{p_n\}$ and $\{q_n\}$ are two sequences of positive numbers converging to zero. If $\{p_n\}$ converges faster than $\{q_n\}$, then $\{u_n\}$ converges faster than $\{v_n\}$ to w.

Lemma 1.5 [3] Let C be a non-empty closed convex subset of a uniformly convex Banach space E , and T a non-expansive mapping on C. Then, $1 - T$ is demiclosed at zero.

Lemma 1.6 [8] Suppose C be a uniformly convex Banach space and $0 < p \le t_k \le q < 1$ for all $n \in N$. Let $\{u_k\}$ and $\{v_k\}$ be two sequences of C such that $\limsup ||u_k|| \leq r$ also we have $\limsup ||v_k|| \leq r$ and $k\rightarrow\infty$ $k\rightarrow\infty$ $\limsup || t_k u_k + (1-t_k)$ $k \rightarrow \infty$ holds for some $r \geq 0$. Then, $\lim_{k\to\infty}||u_k - v_k|| = 0.$

RESULTS

AJMS/Jul-Sep 2023/Volume 7/Issue 3

Theorem 2.1 If K be any non-empty subset of a Banach space X and T be the self-map on K satisfying the non-linear $||Tu - Tv|| \le ||u - v|| - m||x - Ty||$ and iterative scheme for the sequence $\{u_r\}_{r=0}^{\infty}$ given by $w_r = (1 - \tau_r)u_r + \tau_r u_r$, $v_r = Tw_r$ also $u_{r+1} = Tv_r$ with $0 < \{u_r\} \le 1$ and $\sum_{r=0}^{\infty} \tau_r = \infty$. Then show that the inequality

$$
||u_{r+1} - s|| \le (1 - m)^{2(r+1)} ||u_0 - s|| \prod_{k=0}^n (1 - m\tau_0)
$$

Proof: Assume that $s \in F(T)$. So, from the given criterian we get

$$
||w_r - s|| = ||(1 - \tau_r)u_r + \tau_r T u_r - s||
$$

\n
$$
\leq (1 - \tau_r) ||u_r - s|| + \tau_r ||Tu_r - s||
$$

\n
$$
\leq (1 - \tau_r) ||u_r - s|| + \tau_r ||u_r - s|| - m ||u_r - Ts||
$$

\n
$$
\leq (1 - \tau_r + \tau_r - \tau_r s) ||u_r - Ts||
$$

\n
$$
||w_r - s|| \leq (1 - \tau_r s) ||u_r - s||
$$

\nAlso,
\n
$$
||v_r - s|| = ||Tw_r - s||
$$

\n
$$
i.e. ||v_r - s|| \leq (1 - s) ||w_r - s||
$$

Hence, from the above two inequalities we achieve

$$
||v_r - s|| = (1 - m\tau_r)(1 - m)||u_r - s||
$$

Therefore,

$$
||u_{r+1} - s|| = ||Tv_r - s||
$$

i.e.
$$
||u_{r+1} - s|| \le (1 - m) ||Tv_r - s||
$$

From the above two inequalities, we achieve

$$
||u_{r+1} - s|| \le (1 - m)^2 (1 - m\tau_r) ||u_r - s||
$$

Hence, from the above two inequality we estimate

$$
||u_{r+1} - s|| \le (1 - m)^2 (1 - m\tau_r) ||u_r - s||
$$

$$
||u_r - s|| \le (1 - m)^2 (1 - m\tau_{r-1}) ||u_{r-1} - s||
$$

 $||u_{r-1} - s|| \le (1 - m)^2 (1 - m\tau_{r-2}) ||u_{r-2} - s||$by applying similar argument we achieve

$$
||u_1 - s|| \le (1 - m)^2 (1 - m\tau_0) ||u_0 - s||
$$

Thus,

$$
||u_{r+1} - s|| \le (1 - m)^{2(r+1)} ||u_0 - s|| \prod_{k=0}^n (1 - m\tau_0)
$$

Hence, the required inequality.

Limiting case: But, $\tau_r \in [0,1]$ $\forall r \in N, m \in [0,1]$. Now, applying the limiting criteria *n* approaches to ∞. We achieve $\lim_{r\to\infty} ||u_{r+1} - s|| = 0$, from the above inequality and hence, $\{u_r\}_{r=0}^{\infty}$ converges to a fixed point s of T .

Theorem 2.2 Let K be a closed, convex subset of a real normed linear space X and T be a self and contraction mapping on K satisfying the criterion $||Tu - Tv|| \leq \frac{\psi ||u - Tu|| + b||u - v||}{4 + |U||u - Tu||}$ $\frac{u-ru||+b||u-v||}{1+k||u-Tu||}$. Let $\{u_r\}_{r=0}^{\infty}$ be the sequence generated by the iterative processes

$$
u_{r+1} = T\left(\frac{u_r + v_r}{2}\right),
$$

\n
$$
v_r = (1 - \tau_r)u_n + \tau_r T\left(\frac{u_r + v_r}{2}\right),
$$

\n
$$
u_0
$$
 is the initial approximation such that $u_0 \in K$ and $\{\tau_r\}_{r=0}^{\infty} \in$
\nAlso

[0, 1]. Also,

 $u_{r+1} = T\left(\frac{u_r + v_r}{2}\right)$ $\frac{1-\nu_r}{2}\big),$ $v_r = (1 - \delta)u_r + \delta T \left(\frac{u_r + v_r}{2}\right)$ $\frac{r_{\nu r}}{2}$), { u_0 is the initial approximation such that $u_0 \in K$ and $\delta \in [0, 1]$

respectively with sequence $\{w_r\}_{r=0}^{\infty} \in [0, 1]$. Then show that the inequality

$$
||u_{r+1} - s|| \le \left(\frac{\rho}{2}\right)^{r+1} ||u_r - s||_{\prod_{i=0}^{r+1}} \left\{ 1 + \frac{1 - \tau_r + \tau_r \frac{\rho}{2}}{1 - \tau_r \frac{\rho}{2}} \right\}
$$

Proof: Suppose that s be the fixed point of the mapping T. Then by using the first iterative process, we have

$$
||u_r - s|| = \left|\frac{u_r + v_r}{2} - s\right| \le \left|\frac{u_r + v_r}{2} - s\right| \le \frac{\rho}{2} ||u_r - s|| + \frac{\rho}{2} ||v_r - s||
$$

Now,
\n
$$
||v_r - s|| = ||(1 - w_r)u_r + \tau_r T(\frac{u_r + v_r}{2}) - s||
$$
\n
$$
\leq (1 - \tau_r) ||u_r - s|| + \tau_r ||T(\frac{u_r + v_r}{2}) - s||
$$
\n
$$
\leq (1 - \tau_r) ||u_r - s|| + \tau_r \rho ||T(\frac{u_r + v_r}{2}) - s||
$$
\n
$$
\leq (1 - \tau_r) ||u_r - s|| + \tau_r \frac{\rho}{2} ||u_r - s|| + \tau_r \frac{\rho}{2} ||v_r - s||
$$
\n
$$
i.e. (1 - \tau_r \frac{\rho}{2}) ||v_r - s|| \leq ||u_r - s|| + \tau_r ||u_r - s|| + \tau_r \frac{\rho}{2} ||u_r - s||
$$
\n
$$
i.e. ||u_{r+1} - s|| \leq \frac{\rho}{2} \left\{ 1 + \frac{1 - \tau_r + \tau_r \frac{\rho}{2}}{1 - \tau_r \frac{\rho}{2}} \right\} ||u_r - s||
$$

in the same manner we can claim $||u_r - s|| \leq \frac{\rho}{2}$ $\frac{\rho}{2}\Big\{1+\frac{1-\tau_r+\tau_r\frac{\rho}{2}}{1-\tau_r\frac{\rho}{2}}\Big\}$ 2 $1-\tau_r \frac{\rho}{2}$ $\frac{\sqrt{p}}{2}$ $\left\| u_{r-1} - s \right\|$... and hence the last normed linear factor will be $||u_1 - s||$ and which is less than or equal to $\frac{\rho}{2} \left\{ 1 + \frac{1 - \tau_r + \tau_r \frac{\rho}{2}}{1 - \tau_r \frac{\rho}{2}} \right\}$ 2 $1-\tau_r \frac{\rho}{2}$ $\frac{\sqrt{p}}{2}$ $\left\|u_0 - s\right\|$. combining all inequalities, we get $||u_{r+1} - s|| \leq \left(\frac{\rho}{2}\right)$ $\frac{\mu}{2}$ $\|u_r - s\| \prod_{i=0}^{r+1} \left\{ 1 + \frac{1 - \tau_r + \tau_r \frac{\rho}{2}}{1 - \tau_r \frac{\rho}{2}} \right\}$ 2 $1-\tau_r\frac{\rho}{2}$ 2 } .This completes the proof.

Limiting case: Now, Applying the limiting criteria *n* approaches to ∞ . We achieve $\lim_{r\to\infty} ||u_{r+1} - s|| = 0$, from the above inequality and hence, $\{u_r\}_{r=0}^{\infty}$ converges to a fixed point s of T.

Example 2.3 Assuming $T(u) = \frac{u}{2}$ $\frac{a}{2}$, let K and $T: K \to K$ be a contraction mapping. Consider the following iteration methods with the initial approximations $u_0 = 0.1$ and $\{\tau_r\} = \frac{1}{2}$ $\frac{1}{2}$:

 $u_{r+1} = T\left(\frac{u_r + v_r}{2}\right)$ $\frac{\tau v_r}{2}$), $v_r = (1 - \tau_r)u_n + \tau_r T\left(\frac{u_r + v_r}{2}\right)$ $\frac{r_{\nu_r}}{2}\big),$ { u_0 is the initial approximation such that $u_0 \in K$ and $\{\tau_r\}_{r=0}^{\infty}$ ∈

[0, 1]. Also,

$$
u_{r+1} = T\left(\frac{u_r + v_r}{2}\right),
$$

$$
v_r = (1 - \delta)u_r + \delta T\left(\frac{u_r + v_r}{2}\right),
$$

$$
u_0
$$
 is the initial approximation such that $u_0 \in K$ and $\delta \in [0, 1]$

respectively with sequence $\{w_r\}_{r=0}^{\infty} \in [0, 1]$. We notice that, for both iterative techniques, $\{u_r\}$ converges at zero in the $28th$ approximation, indicating an equivalent rate of convergence.

Theorem 2.4 Let *K* be a non-empty, closed and convex subset of uniform convex Banach space (UCBS) X. Also T be a non-expansive self mapping on K and $\{u_r\}$ be a sequence defined such that $u_{r+1} = (1 - \theta_r) T v_r + \theta_r T w_r$ $v_r = (1 - \varphi_r) w_r + \varphi_r T w_r$ $w_r = (1 - \omega_r)u_r + \omega_r T u_r$ where $\{\theta_r\}$, $\{\varphi_r\}$ and $\{\omega_r\}$ are real sequence in (0, 1). Also, $F(T) \neq \emptyset$.

Then show that the inequality $||S_{n,m}x - S_{n,m}y|| \leq \left[\prod L_{j=1}^{n+n} \right]$ $\lim_{i=n}$ ^{n+m-1} [||x − y|| + $\sum_{i=n}^{n+m-1} \rho_i$]∀ x, y ∈ C.

Proof: Letting, $\lim_{r \to \infty} ||u_r - s|| = \text{cand } \limsup_{r \to \infty} ||v_r - s|| \leq c$, $\limsup_{r \to \infty} ||w_r - s|| \leq c$. Here, T be a nonexpansive self-mapping on K. So, $||Tu_r - s|| \le ||u_r - s||$, $||Tv_r - s|| \le ||u_r - s||$, and $||Tw_r - s|| \le$ $||u_r - s||$. Taking limsup on both sides, we achieve the results $\limsup_{r \to \infty} ||Tu_r - s|| \leq c$, $\limsup_{r \to \infty} ||Tv_r - s||$ $s \parallel \leq c$, and limsup $\begin{aligned} \max_{r \to \infty} & \|Tw_r - s\| \leq c. \end{aligned}$

Since
$$
c = \lim_{r \to \infty} ||u_{r+1} - s|| = \lim_{r \to \infty} ||(1 - \theta_r) T v_r + \theta_r T w_r - s||
$$

Ofcourse, we can modify the iteration scheme

$$
c = \lim_{r \to \infty} ||u_{r+1} - s|| = \lim_{r \to \infty} ||(1 - \theta_r)Tw_r + \theta_r Tv_r - s||
$$

AJMS/Jul-Sep 2023/Volume 7/Issue 3

$$
\leq \lim_{r \to \infty} ||(1 - \theta_r)(Tw_r - s) + \theta_r(Tv_r - s)||
$$

$$
\leq \lim_{r \to \infty} [(1 - \theta_r) ||Tw_r - s|| + \theta_r ||(Tv_r - s)||]
$$

$$
\leq \lim_{r \to \infty} [(1 - \theta_r) ||Tu_r - s|| + \theta_r ||(Tu_r - s)||]
$$

$$
= \lim_{r \to \infty} ||Tu_r - s||
$$

But, $\lim_{r \to \infty} ||Tw_r - Tv_r|| = 0$

Now, $||u_{r+1} - s|| = ||(1 - \theta_r)Tw_r + \theta_r Tv_r - s|| \le ||Tw_r - s|| + \theta_r ||Tw_r - Tv_r||$ Hence, $c \leq \lim_{n \to \infty} \inf ||Tw_r - s||$ Thus, $\lim_{n\to\infty} ||Tw_r - s|| = c$

On the other hand, we have

$$
||Tw_r - s|| \le ||Tw_r - Tv_r|| + ||Tv_r - s|| \le ||Tw_r - Tv_r|| + ||v_r - s||
$$

and this gives us $c \leq \lim_{n \to \infty} \inf ||v_r - s||$

$$
\lim_{n\to\infty}||v_r - s|| = c
$$

Using lemma 1.6, we get $\lim_{n \to \infty} ||w_r - Tw_r|| = 0$ Since, $||v_r - s|| \le ||w_r - s|| + \varphi_r ||Tw_r - w_r||$ we write, $c \leq \lim_{n \to \infty} \sup ||w_r - s||$ then, $||w_r - s|| = c$ so, $c = \lim_{n \to \infty} ||w_r - s||$ $=\lim_{n\to\infty}||(1-\theta_r)u_r+\theta_rTu_r-s||$ $=\lim_{n\to\infty}||(1-\theta_r)(u_r-s)+\theta_r(Tu_r-s)||)$

Now, setting $a_r(t) = ||tu_r + (1-t)v_1 - v_2||$, $n \in N$ then $(0) = lim$)) = $\lim_{r \to \infty} ||v_1 - v_2||$ and $a_r(1) = \lim ||u_r - v_2||$ exists. Hence, it is sufficient to show that the above expression is true for $t \in$ $r\rightarrow\infty$ $(0, 1)$.

Taking $S_{n,m} = G_{n,m} G_{n+m-2} \dots G_n \forall n, m \in N$. Then, $u_{n+m} = S_{n,m} u_{n,m} S_{n,m} v = v \forall n_{n \in N} F(G_n)$ and $||S_{n,m}u - S_{n,m}v|| \leq \left[\prod L_{j}^{n+m}\right]_{j=n}$ $\lim_{i=n}$ $\left[\left\|u-v\right\|+\sum_{i=n}^{n+m-1}\rho_i\right]$ \forall $u, v \in K$ and this is our desired inequality.

Limiting case: and by Lemma 1.6, we achieve $\lim_{r \to \infty} ||u_r - Tu_r|| = 0$.

Example 2.5 Suppose $K = \begin{bmatrix} 1, 50 \end{bmatrix}$ and $X = R$. Let $T: K \rightarrow K$ be a mapping with the definition given by $T(u) = \sqrt{u^2 - 9u + 54}$ for all $u \in K$. Select $\theta_r = \varphi_r = \omega_r = \frac{3}{4}$ $\frac{3}{4}$, with $u_1 = 30$ as the beginning value. Then, using the aforementionediteration methods, we see that, in the 41^{st} approximation, $\{u_r\}$ converges at 6, for both iterative schemes, indicating an identical rate of convergence.

REFERENCES

- 1. Abbas, M., Nazir, T. (2014): A new faster iteration process applied to constrained minimization and feasibility problems, MatematickiVesnik, 66(2), 223-234.
- 2. Berinde, V. (2004): Picard iteration converges faster than Manniteration for a class of quasicontractive operators, Fixed Point Theory and Applications 2, 97-105.
- 3. Goebel, K., Kirk, W. A.(1990): Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, 28, Cambridge University Press.
- 4. Ishikawa, S. (1974): Fixed points by a new iteration method, Proceedings of the American Mathematical Society 44, 147–150.
- 5. Ishikawa, S. (1976): Fixed points and iteration of a nonexpansive mapping in a Banach space, Proceedings of the American Mathematical Society 59(1), 65–71.
- 6. Mann, W. R. (1953): Mean value methods in iteration, Proceedings of the American Mathematical Society 4, 506–510.
- 7. Noor, M. A. (2000): New approximation schemes for general variational inequalities, Journal of Mathematical Analysis and Applications, 251(1), 217-229.
- 8. Schu, J. (1991): Weak and strong convergence to fixed points of asymptotically non-expansive mappings, Bulletin of the Australian Mathematical Society 43, 153–159.