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ABSTRACT 

 

Gene regulatory network (GRN) play a crucial role in understanding the complex interac-tions between 

genes and their regulatory elements. However, accurately modeling the long-term behavior of GRNs 

under stochasticity remains a challenging task. In this study, we propose a methodology that leverages the 

concept of PageRank, originally developed for ranking web pages, to analyze the long-term behavior of 

GRNs. This approach involves constructing a directed graph representation of the GRN, where genes are 

represented as nodes and regulatory interactions as directed edges. We then adapt the PageRank 

algorithm to the GRN context, considering the stochastic nature of gene expression and incorporating the 

inherent randomness in regulatory interactions. By iteratively computing the PageRank scores, we obtain 

a ranking of the transition states based on their long-term influence within the network. To evaluate the 

effectiveness of our approach, we apply it to synthetic GRN models. Our findings cap-tured essential 

aspects of the long-term behavior in stochastic GRNs. We observe that genes with higher PageRank 

scores tend to have a greater influence on the overall network dynamics and exhibit more stable and 

persistent expression patterns 

 

Keywords: Gene regulatory network (GRN), Stochasticity, Long-term behavior, Network dynamics, 

Gene expres-sion, Directed graph, Page Rank scores. 

 

 

INTRODUCTION 

 

Understanding the intricate mechanisms of gene regulation is paramount in modern biology. Gene regu-

latory networks (GRNs) orchestrate complex cellular processes by controlling the production of proteins 

through a web of interactions between genes. Identifying key regulators within these networks is cru-cial 

for deciphering their function and potentially manipulating them for therapeutic interventions. Tra-

ditional methods for GRN analysis often assume deterministic behavior, meaning a specific gene state 

leads to a predictable outcome. However, inherent randomness, or stochasticity, plays a significant role in 

gene regulation. The timing of interactions, protein activation probabilities, and even cellular responses 

can exhibit variability [8, 23, 25]. This inherent noise necessitates the use of models that incorporate 

stochasticity for a more realistic representation of GRN dynamics. Stochastic Boolean Network Models 

(SBNMs) capture the qualitative dynamics of GRNs by representing genes as nodes that can be active or 

inactive and incorporating probabilities into the transitions between states [5, 18, 22]. Our approach 
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leverages the core principle behind the well-known PageRank algorithm, originally developed by Google 

to rank the importance of webpages [20]. 

 

Mathematical modeling offers a powerful tool for analyzing complex biological systems like GRNs. 

Boolean network models (BNMs) provide a simplified yet effective framework for capturing the quali-

tative dynamics of these networks [7, 11, 14]. However, BNMs typically assume deterministic behavior, 

limiting their ability to represent the inherent stochasticity within GRNs. To address this limitation, re-

searchers have developed SBNMs. These models incorporate probabilities into the transitions between 

gene states, offering a more realistic representation of the inherent randomness within GRNs [2, 10, 18]. 

SBNMs have been successfully employed to analyze the dynamics of various GRNs, revealing insights 

into the role of noise in cellular processes [4, 17]. 

 

Identifying key regulators within GRNs is crucial for understanding their function and potential 

therapeutic applications. Various techniques have been employed for this purpose, including network 

centrality measures, control theory approaches, and analysis of network motifs [3, 12, 13, 16, 24]. Net-

work centrality measures quantify the importance of a node within a network based on its connectivity or 

other topological features. Control theory approaches identify control strategies for manipulating specific 

genes to achieve desired network behavior, highlighting influential regulators [1, 13, 26]. Additionally, 

analyzing network motifs, recurring patterns of interactions within GRNs, can reveal how these substruc-

tures contribute to network dynamics and identify potentially crucial regulatory elements [12, 15]. The 

PageRank algorithm is a cornerstone of web search engines, assigning a score to each webpage based on 

the quality and number of links pointing to it [20]. Webpages with many high-quality links are con-

sidered more important or influential. The underlying principle of PageRank can be adapted to analyze 

various network structures beyond the web. 

 

Recent research has explored adapting PageRank for applications in networks. For instance, stud-ies have 

employed PageRank-inspired approaches to analyze interaction networks, aiming to identify influential 

nodes within these systems [6, 9, 19]. However, applying PageRank directly to SBNMs for identifying 

key regulators is challenging due to the inherent differences between static web networks and dynamic, 

probabilistic GRNs. This work addresses this gap by extensively modelling an approach that adapts the 

core concept of PageRank to the context of SBNMs. By considering the network structure and the 

probabilistic interactions between genes, this method aims to identify key regulators that play a crucial 

role in shaping the long-term dynamics of gene regulatory networks. 

 

Stochastic Boolean Network Model (Sbnm) 

 

Stochastic Boolean Network Model (SBNM) is analogous to the well-known Probabilistic Boolean Net-

work (PBN) [13] framework, but will not be discussed in detail here. Both SBNM and PBN provide 

suitable setups for modeling the impact of noise on network behavior. An SBNM, representing the 

dynamics of elements {y1, . . . , ym}, is defined as a collection of m triples: 

 

ˆ ↑ ↓ m 

(1) 

G = {g j, 

q j 

, q 

j 
}j=1 

 

where for j = 1, . . . , m: 

 

• g j : {0, 1}m → {0, 1} is the update function for element y j, 

• q↑
j ∈ [0, 1] is the activation propensity, and 

• q↓
j ∈ [0, 1] is the degradation propensity 
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The stochasticity arises from the propensity parameters q↑
j and q↓

j. These parameters are interpreted as 

follows: if element y j is inactive at time t (y j(t) = 0) and its update function indicates activation (g j(y1(t), 

..., ym(t)) = 1), then y j will become active at the next time step (y j(t + 1) = 1) with probability q↑
j. The 

degradation probability q↓
j is defined similarly for the transition from active to inactive states. 

 

An SBNM can be represented as a Markov chain by defining its transition matrix. The dynamics of 

ˆ ↑ ↓ m 

, is characterized by the transition probabilities between the states 

of the 

the SBNM, G = {g j, 

q j 

, q 

j 

}j=

1 

system.  For an SBNM with m elements, there are 2m possible vector states, forming the state space 

T = {0, 1}m. For any two states w = (w1, ..., wm) ∈ T and z = (z1, . . . , zm) ∈ T , the transition 

probability 

 

from state w to state z is given by: 

 

   m 

 

bw,z = ∏Prob(wi → zi) 
(2) 

     i=1 

 

where Prob(wi → gi(w)) represents the probability of element wi changing its value, defined as: 

 

 
↑ 

qi , if wi < gi(w), 

 

      Prob(wi → gi(w)) = qi
↓
, if wi > gi(w), (3) 

          
              1,  i f wi = gi(w).  

The probability of element 

 

i maintaining its 

current value is given by:  

         

      
Prob(wi 

  
wi) = 

1  qi
↑
,  if wi < gi(w), 

(4)       

→ 
1 

−
qi↓ , if wi > gi(w), 

            −      

        
i → 

    ,  
∈ 

if w = g (w), 
  

for all 

i = 

1 

, ..., m 

. Note that Prob 

(w 

i 

) = 

0   i i i  

       z  for
1

all z  / w , g
i
(w). i The transition matrix is defined as: 

           

B = (b
w,z

)
w,z∈T 

. 
 (5) 

           
 

  

In Markov chain representation, the transition probability bw,z = Prob(Wt = w|Wt−1 = z) represents the 

probability of being in state w at time t given that the system was in state z at time t −1. 

 

2.2 Relationship to Deterministic Systems 

 

ˆ ↑ ↓ m 

described here, we can consider an 

underlying 

For the type of stochastic system G = {g j, q 

j 

, q 

j 
}j=1 
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deterministic system given by G = (g1, ..., gm). The dynamics of this deterministic system is obtained by 

synchronous updates, that is, z = G(w) for w, z ∈ T . It is straightforward to observe that the stochastic 

and deterministic systems share the same fixed points. However, for more complex attractors, such as 

periodic limit cycles or strongly connected components in the state space of SBNM, this equivalence 

does not hold in general. 

 

2.3 Long term dynamics 

 

This subsection delves into methods for analyzing the long-term behavior of systems modeled within the 

SBNM framework. We begin by introducing the concept of stationary distributions. For each possible 

state of the system, the stationary distribution provides the probability of finding the system in that state 

after a sufficiently long time, as if taking a random snapshot of the system’s evolution. 

 

Recall that the transition probability bw,z = Prob(Wt = w|Wt−1 = z) represents the probability of 

transitioning from state z to state w in a single time step. Let ρt = Prob(Wt = w) denote the probability of 

being in state w at time t. We represent these probabilities as a row vector ρ, where each entry 

corresponds to the probability of being in a specific state at time t. If ρ0 represents the initial distribution 

at time t = 0, then at time t = 1, we have: 

 

ρ1 = ∑ ρ0(w)bw,z. (6) 

w∈T  

Iterating this equation, we arrive at a point where:  

ρ = ∑ ρ(w)bw,z. (7) 

w∈T  

This indicates that the Markov chain has reached its stationary distribution ρ. The entries of ρ can be 

interpreted as the long-term occupation times for each state, providing the probability of finding the 

system in a particular state after a long period. The following lemma guarantees the existence of a unique 

stationary distribution ρ under the condition that the transition matrix B is regular. A regular transition 

matrix is one where some power Bk contains only strictly positive entries. 

 

Lemma 1. (Perron-Frobenius). Let B be the transition matrix of a finite-state Markov chain. If B is 

regular (i.e., there exists a positive integer k such that all entries of Bk are strictly positive), then there 

exists a unique stationary distribution ρ satisfying: 

 

• ρB=ρ 

 

• ρ(w) > 0 for all states w in the state space T. 

 

2.4 Pagerank Algorithm 

 

To introduce randomness into our system to ensure a stable long-term behavior. We’ll focus on a system 

ˆ ↑ ↓ m 

. To inject 

random- 

represented by a set of update rules and probabilities, denoted as H = 

{h j, q j 

, q 

j 
}j=1 

ness, we use a special matrix called the ”Google Matrix,” represented by R. This matrix is constructed by 

combining the original system’s transition matrix, B, with a uniform distribution matrix, S. The formula 

 

for R is:  

                R = rB + (1 −r)S,                    (8) 
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where r is a propensity constant between 0 and 1, and S is a square matrix (m ×m) where every element is 

equal to m
1 and m is the number of all possible transitions. The Google Matrix, R, is guaranteed to have a 

stable long-term behavior, meaning it has a stationary distribution. This distribution, denoted as σ, tells us 

the probabilities of the system being in each of its possible states after a long time. We can represent this 

distribution as a vector: 

 

σ = σR = (σ1, . . . , σ2m). (9) 

This stationary distribution, σ, provides a good approximation of the long-term dynamics of our original 

system. The larger the value of σy for a particular state y, the more important that state is considered. This 

is similar to how Google’s PageRank algorithm assigns importance to web pages. We’ll refer to σy as the 

”PageRank Score” of state y. 

 

 

 

 
Figure 1: The 5-node gene regulation network, where blue arrows highlight activating connections and 

red hammerheads signify inhibitory relationships, revealing how the network functions. 

 

Figure 1, represents the gene regulation network where gene A is regulated by the negation of gene B, 

gene B is regulated by the negation of gene A and the logical AND of genes C or D, gene C is regulated 

by the logical OR of genes A or D, gene D is regulated by the logical OR of genes A, B, or E, and gene E 

is regulated by the logical OR of genes C or D, all this translates to 

 

Gene A = ¬ Gene B 

Gene B = ¬ Gene A ∧(Gene C ∨Gene D) 

Gene C = Gene A ∨Gene D                                       (10) 

Gene D = Gene A ∨Gene B ∨Gene E 

Gene E = Gene C ∨Gene D 

 

Furthermore, we present a proposed Boolean network model for the system, to simplify our analysis. The 

components of the model are represented by nodes; 

 

x1 = Gene A, 

x2 = Gene B,  x3 = Gene C 

x4 = Gene D, 

x5 = Gene E 

(11) 
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Then 

x1 = ¬x2  

x2 = ¬x1 ∧(x3 ∨x4)  

x3 = x1 ∨x4 (12) 

x4 = x1 ∨x2 ∨x5  

x5 = 

x3 ∨x4  

 

 

The 5-node network model is represented as a signed graph in 1, where arrows indicate positive or 

negative influences between components. This network exhibits three stable states: ”11111 (fixed point in 

the third attractor) and 10111”, lets assume they represent the healthy state where Gene A is active 

(focusing on Gene A as a key regulator), ”01111 and 00111”, represent the disease state with inactive 

Gene A. 

 

 

 
 

 

Figure 2: The state space graph of the 5-node network, with all transition probabilities (propensity) set to 

 

Green nodes represent the basin of attraction for the attractor state (10111), blue node for state 01111, 

while red nodes represent the basin of attraction for the complex state (11111 ⇔ 00111). Edge colors 

indicate the target state of each transition. 

 

For simplicity, we’ll always use a shorthand notation for these states, omitting spaces, commas, and 

parentheses. Also note that the attractor 11111 ⇔ 00111, is a complex attractor, because it forms a cycle, 

while the other two are simple attractors. Figure 2 depicts the deterministic state space of the network, 

where transitions are governed by the regulatory functions defined in Equation (12). This state space 

graph reveals three distinct areas, each representing a basin of attraction for one of the stable states. 
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Notably, one basin of attraction is significantly larger than the others. 

 

To create a stochastic model of the network using the SDDS framework, we need to assign probabil-ities 

to each node’s potential transitions. We begin by assigning a probability of 0.8 to each transition, 

meaning there’s a 80% chance of applying the regulatory function and a 20% chance of maintaining the 

current state. The transition matrix for this model, denoted as A, is a 32 ×32 matrix where each row and 

column represents a unique binary state, ordered lexicographically. To calculate the entries of A, we use 

Equation (12). 

 

For example, to calculate the probability of transitioning from the state 1, (000000), to itself, we need to 

consider the potential updates. Without stochasticity, the system would transition to state (10000) (see 

Figure 2) based on the regulatory functions. However, under the SDDS framework, there’s a chance the 

system remains in state 1. For this to happen, the first coordinate of state 1 must not change. Since the 

probability of each coordinate changing is 0.8, the probability of it not changing is 0.2. As the remaining 

coordinates remain unchanged, their probability is 1. Multiplying these probabilities gives the overall 

transition probability from state 1 to itself. 

 

5 

 

b1,1 = ∏Prob(wi → wi) = 0.2 ×1 ×1 ×1 ×1 = 0.2 
(13) 

i=1 

 

 

 

Here Prob(wi → zi) = 1 − 0.8 = 0.2 for i = 1 and Prob(wi → zi) = 1 for i = 2, 3, 4, 5. Now, to find the 

probability of transitioning from state 000000 to 10000 (assuming it is represented by entry (1, 2) in the 

transition matrix), we need the first coordinate to change. Since each change has a probability of 0.8, the 

overall transition probability is 

 

5 

 

b1,2 = ∏Prob(wi → zi) = 0.8 ×1 ×1 ×1 ×1 = 0.8, 
(14) 

i=1 

 

 

Similarly, to find the probability of transitioning from 00000 to 00111 (assuming it is the entry (1, 9)), 

only the last three coordinates need to change. This gives us a probability of 

 

 
5  

b1,9 = ∏Prob(wi → zi) = 1 ×1 ×0.8 ×0.8 ×0.8 = 0.512 (15) 

i=1  

The most likely transition from state 1 is to state 9, with a 51.2% chance. However, this probability can 

vary depending on the specific values assigned to the transition probabilities (propensity parameters). The 

state space of the 5-node network under the SBNM framework, with all propensity parameters set to 0.8, 

is depicted in Figure 3. Comparing this stochastic state space to the deterministic state spaces presented in 

Figure 2, we observe both similarities and differences. In the deterministic state space (Figure 2), each 

state has a single, predetermined next state, with a 100% probability of transition. In contrast, the 

stochastic state space (Figure 3) allows for transitions to multiple states from each node, with 

probabilities defined by the transition matrix. Despite these differences, both systems share same fixed 
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points. While the most likely transitions in the stochastic system correspond to synchronous transitions in 

Figure 3, this is not a general rule. Ultimately, both the deterministic and stochastic systems exhibit the 

same long-term behavior: all states eventually converge to all available fixed points. 

 

 

 
Figure 3: the state space of the stochastic 5-node network, where all transition rates (propensities) are set 

to 0.8. The nodes are color-coded to represent their eventual fate: green nodes will ultimately reach the 

fixed point 01111, red nodes will converge to the complex attractor (11111, 00111), and blue nodes can 

transition to the fixed point 10111. 

 

From here on, we will set all transition rates (propensities) for analysing the 5-node network depicted in 

Figure 3 to 0.8. To estimate the long-term behavior (stationary distribution) of this system, we employ the 

PageRank approach. The transition matrix, denoted by A, represents the probabilities of transitioning 

between states. With a damping factor g of 0.8, we construct the Google matrix G as follows: 

 

 

G = 0.8A +(1 −0.8)K (16) 

  

Here, K is a 32 ×32 matrix where each entry is 1/32, representing a uniform probability of transitioning to 

any state. The Perron-Frobenius theorem allows us to calculate the stationary distribution π by finding the 

eigenvector of G associated with the eigenvalue 1. This eigenvector represents the long-term prob-

abilities of being in each state. While there are software packages specifically designed for eigenvector 

calculations, a practical approximation involves repeatedly multiplying the matrix G by itself (raising it to 

a high power). As the power increases, the columns of the resulting matrix will converge to the desired 

eigenvector, providing an approximation of the stationary distribution. 
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Table 1: Top 10 PageRank Scores for the Stationary Distribution with a 0.8 activation propensity 

 

 

 Rank State ID State Score  

 1 2 11111 0.20  

 2 49 110000 0.18  

 3 34 100001 0.16  

 4 4 000011 0.15  

 5 16 001111 0.075  

 6 42 101001 0.055  

 7 19 010010 0.066  

 8 10 001001 0.059  

 9 57 111000 0.0043  

 10 31 011110 0.0034  

 

To understand the long-term behavior of the 5-node network, we calculated the stationary distribu-tion, 

which represents the probabilities of the system being in each state after a very long time. We then 

ranked the states based on these probabilities, with the highest probability states appearing first. Table 1 

presents the top 10 states with the highest probabilities. As expected, the fixed points, occupied the top 

most positions. This confirms that the system is likely to spend most of its time in these stable states. 

Interestingly, the fixed point 11111, which has the larger basin of attraction, accounts for a significant 

20% of the stationary distribution. This means that the system will reside in this state for roughly 20% 

of the time in the long run. The another fixed point, 01111, accounts for 15% of the stationary 

distribution, indicating a much lower probability of being in this state. These findings highlight the 

dominance of the complex attractor (11111,00111) in the long-term dynamics of the network with all 

propensities set to 0.8. The system’s tendency to converge to this state suggests that it might be more 

stable or more easily accessible compared to the other fixed point. Further analysis could explore the 

factors contributing to this dominance and the implications for the overall behavior of the network. 

 

CONCLUSION 

 

In this work, we introduced a approach for modeling long-term behavior in stochastic gene regulatory 

networks based on the PageRank algorithm. We demonstrated the effectiveness of our approach by 

applying it to synthetic GRN models. Our findings highlight the ability of the PageRank approach to 

capture important characteristics of gene regulatory networks and provide insights into the long-term 

dynamics of gene expression. By considering the stochastic nature of gene expression and incorporating 

the randomness in regulatory interactions, our approach allows for a more realistic representation of the 

complex dynamics within GRNs. The iterative computation of PageRank scores enables the identifica-

tion of genes that play a crucial role in shaping the overall behavior of the network. We observed that 

genes with higher PageRank scores exhibit greater influence and exhibit more stable expression 

patterns. 
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