Asian Journal of Mathematical Sciences(AJMS) <p>Mathematics in the Asian region has grown tremendously in recent years. There is a need to have a journal to unite such a development. The Asian Journal of Mathematical Sciences (AJMS) is a new journal that aims to stimulate mathematical research in the Asian region. It publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics. High standards will be applied in evaluating submitted manuscripts, and the entire editorial board must approve the acceptance of any paper.</p> <p> </p> <p><strong>Asian Journal of Mathematical Sciences (AJMS) </strong>is an international Referred and Peer Reviewed Online Journal with E-ISSN: 2581-3463 published by B.R. Nahata Smriti Sansthan for the enhancement of Pure and Applied Mathematics, Mathematical Physics, Theoretical Mechanics, Probability and Mathematical Statistics, and Theoretical Biology. </p> <p>AJMS is an Open Access Online Journal that publishes full-length papers, reviews and short communications exploring and to promote diverse and integrated areas as Applied Mathematics and Modeling, Analysis and Its Applications, Applied Algebra and Its Applications, Geometry and Its Applications, Algebraic Statistics and Its Applications, Algebraic Topology and Its Applications.</p> <p><strong><u>SUBJECT CATEGORY </u></strong></p> <p>Papers reporting original research and innovative applications from all parts of the world are welcome.</p> <p><strong>Subject areas suitable for publication include, but are not limited to the following fields:</strong></p> <p><strong>Applied Mathematics and Modeling:</strong></p> <ul> <li>Computational Methods,</li> <li>Ordinary and partial Differential Equations,</li> <li>Mathematical Modeling and Optimization,</li> <li>Probability and Statistics Applications,</li> <li>Operations research,</li> <li>Model selection,</li> <li>Bio Mathematics,</li> <li>Data Analysis and related topics. </li> <li>Mathematical Finance,</li> <li>Numerical Solution of Stochastic Differential Equations,</li> <li>Stochastic Analysis and Modeling.</li> </ul> <p><strong>Analysis and Its Applications: </strong></p> <ul> <li>Approximation Theory and Its Applications,</li> <li>Ergodic Theory,</li> <li>Sequence Spaces and Summability,</li> <li>Fixed Point Theory,</li> <li>Functional Analysis and Its Applications and related topics.</li> </ul> <p><strong>Applied Algebra and Its Applications</strong>:</p> <ul> <li>Information Theory and Error Correcting Codes,</li> <li>Cryptography,</li> <li>Combinatorics and Its Applications,</li> <li>Cellular Automata,</li> <li>Fuzzy and Its Applications,</li> <li>Computational Algebra,</li> <li>Computational Group Theory and related topics</li> </ul> <p><strong>Geometry and Its Applications</strong>:</p> <ul> <li>Algebraic Geometry and Its Applications,</li> <li>Differential Geometry,</li> <li>Kinematics and related topics</li> </ul> <p><strong>Algebraic Statistics and Its Applications</strong>:</p> <ul> <li>Algebraic statistics and its applications</li> </ul> <p><strong>Algebraic Topology and Its Applications</strong>:</p> <ul> <li>Algebraic Topology and Its Applications,</li> <li>Knot Theory and related topics</li> </ul> <p><strong>Pure and Applied Mathematics and its Applications</strong>:</p> <ul> <li>Biology,</li> <li>Chemistry,</li> <li>Physics,</li> <li>Zoology,</li> <li>Health Science,</li> <li>Earth Science,</li> <li>Geology,</li> <li>Social Sciences,</li> <li>Industrial research,</li> <li>Computer Science,</li> <li>Agriculture and Forestry,</li> <li>Environmental Sciences,</li> <li>Statistics,</li> <li>Engineering,</li> <li>Natural Sciences,</li> <li>Political Sciences.</li> </ul> <p><strong><u>JOURNAL PARTICULARS</u></strong></p> <table> <tbody> <tr> <td width="281"> <p>Title</p> </td> <td width="517"> <p><strong>Asian Journal of Mathematical Sciences</strong></p> </td> </tr> <tr> <td width="281"> <p>Frequency</p> </td> <td width="517"> <p>Quarterly</p> </td> </tr> <tr> <td width="281"> <p>E- ISSN</p> </td> <td width="517"> <p><strong>2581-3463</strong></p> </td> </tr> <tr> <td width="281"> <p>P-ISSN</p> </td> <td width="517"> <p><strong>-</strong></p> </td> </tr> <tr> <td width="281"> <p>DOI</p> </td> <td width="517"> <p><strong></strong></p> </td> </tr> <tr> <td width="281"> <p>Publisher</p> </td> <td width="517"> <p><strong>Mr. Rahul Nahata</strong>, B.R. Nahata College of Pharmacy, Mhow-Neemuch Road, Mandsaur-458001, Madhya Pradesh</p> </td> </tr> <tr> <td width="281"> <p>Chief Editor</p> </td> <td width="517"> <p>Dr. M.A. Naidu</p> </td> </tr> <tr> <td width="281"> <p>Starting Year</p> </td> <td width="517"> <p>2017</p> </td> </tr> <tr> <td width="281"> <p>Subject</p> </td> <td width="517"> <p>Mathematics subjects</p> </td> </tr> <tr> <td width="281"> <p>Language</p> </td> <td width="517"> <p>English Language</p> </td> </tr> <tr> <td width="281"> <p>Publication Format</p> </td> <td width="517"> <p>Online</p> </td> </tr> <tr> <td width="281"> <p>Email Id</p> </td> <td width="517"> <p>,</p> </td> </tr> <tr> <td width="281"> <p>Mobile No.</p> </td> <td width="517"> <p>+91-7049737901</p> </td> </tr> <tr> <td width="281"> <p>Website</p> </td> <td width="517"> <p></p> </td> </tr> <tr> <td width="281"> <p>Address</p> </td> <td width="517"> <p>B.R. Nahata Smriti Sansthan, BRNSS PUBLICATION HUB, B.R. Nahata College of Pharmacy, Mhow-Neemuch Road, Mandsaur-458001, Madhya Pradesh</p> </td> </tr> </tbody> </table> <p> </p> en-US <p>This is an Open Access article distributed under the terms of the Attribution-Noncommercial 4.0 International License [CC BY-NC 4.0], which requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, for noncommercial purposes only.</p> (M A Naidu) (Mr. Nilesh Jain) Tue, 14 Jun 2022 04:20:49 +0000 OJS 60 Review on the Inverse Rayleigh Distribution <p>This article discusses Bayesian and non-Bayesian estimation problem of the unknown parameter for the inverse Rayleigh distribution based on the lower record values. Maximum likelihood estimators of the unknown parameters were obtained. Furthermore, Bayes estimator has been developed under squared error and zero one loss functions. We discuss also statistical properties and estimation of power-transmuted inverse Rayleigh distribution (EIRD). We introduce the transmuted modified inverse Rayleigh distribution using quadratic rank transmutation map, which extends the modified inverse Rayleigh distribution. We introduce a generalization of the inverse Rayleigh distribution known as EIRD which extends a more flexible distribution for modeling life data. Some statistical properties of the EIRD are investigated, such as mode, quantiles, moments, reliability, and hazard function. We describe different methods of parametric estimations of EIRD discussed by using maximum likelihood estimators, percentile-based estimators, least squares estimators, and weighted least squares estimators and compare those estimates using extensive numerical simulations. The new two-scale parameters generalized distribution were studies with its distribution and density functions, besides that the basic properties such as survival, hazard, cumulative hazard, quantile function, skewness, and Kurtosis functions were established and derived. To estimate the model parameters, maximum likelihood, and rank set sampling estimation methods were applied with real-life data. We have introduced weighted inverse Rayleigh (WIR) distribution and investigated its different statistical properties. Expressions for the Mode and entropy have also been derived. A comprehensive account of the mathematical properties of the modified inverse Rayleigh distribution including estimation and simulation with its reliability behavior is discussed.</p> Amel Abd-El- Monem Copyright (c) 2022 Amel Abd-El- Monem Tue, 14 Jun 2022 00:00:00 +0000