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ABSTRACT 

 

In this paper, lower bound and upper bound on the covering radius of DNA codes over N with 

respect to lee distance are given. Also determine the covering radius of various Repetition 

DNA codes, Simplex DNA code Type α and Simplex DNA code Type β and bounds on the 

covering radius for MacDonald DNA codes of both types over N. 
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INTRODUCTION 

 

In, DNA is found naturally as a double stranded molecule, with a form similar to a twisted ladder. The 

backbone of the DNA helix is an alternating chain of sugars and phosphates, while the association 

between the two strands is variant combinations of the four nitrogenous bases adenine (A), thymine (T), 

guanine (G) and cytosine (C). The two ends of the strand are distinct and are conventionally denoted as 3’ 

end and 5’ end. Two strands of DNA can form (under suitable conditions) a double strand if the respective 

bases are Watson- Crick[17] complements of each other - A matches with T and C matches with G, also 

3’ end matches with 5’ end.  

The problem of designing DNA codes (sets of words of fixed length n over the alphabets { A, C, G, T } 

that satisfy certain combinatorial constraints has applications for reliably storing and retrieving 

information in synthetic DNA strands. These codes can be used in particular for DNA computing [1] or as 

molecular bar-codes. 

 

There are many researchers doing research on code over finite rings. In particular, codes over Z4 received 

much attention [2, 3, 4, 9, 11, 15, 16, 5]. The covering radiuses of binary linear codes were studied [4, 5]. 

Recently the covering radius of codes over Z4 has been investigated with various distances [12]. In 1999, 

Sole et.al gave many upper and lower bounds on the covering radius of a code over Z4 with different 

distances. In [14, 5], the covering radius of some particular codes over Z4 have been investigated. 

In this paper, investigate the covering radius of the Simplex DNA codes of both types and MacDonald 

DNA codes and repetition DNA codes over N. Also generalized some of the known bounds in [2] 
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Preliminary 

  

Coding theory has several applications in Genetics and Bio engineering. The problem of designing DNA 

codes (sets of that words of fixed length n over the alphabet N = { A, C, G, T} that satisfy certain 

combinatorial constraints) has applications for reliably storing and retrieving information in synthetic 

DNA strands. 

A DNA code of length n is a set of code words (x1,   x2,…. , xn) with  
xi∈ {A,C,G,T}=N

(representing the 

four nucleotides in DNA). Use a hat to denote the Watson-Crick complements of a nucleotide, so A 

matches with T and C matches with G. 

 

The DNA codes are sets of words of fixed length n over the alphabet N and it follows the map

A→0,C→1,T→2  and G→3 .    Therefore the problem of the DNA codes is corresponding to the 

problem of the Z4-linear codes. These transpositions do not affect the GC-weight of the code word (the 

number of entries that are C or G). In my work, by using the above map in Z4 with lee  weight, so obtain 

the covering radius for repetition DNA codes . 

 Let d = (d1, d2, · · · , dn) ∈  N
n 

and n be its length. Let b be an element of  {A, C, G, T }.  

For all d = (d1, d2, · · · , dn) ∈  N
n
, define the weight of d at b to be  

    wb(d) = |{i|xi = b}|. 

 

A DNA linear code C of length n over N is an additive subgroup of Nn. An element of C is called a DNA 

code word of C and a generator matrix of C is a matrix whose rows generate C. In [12], the Lee weight 

w(x) of a vector x is 0 if xi = 0; 1 if xi = 1, 3 and 2 if xi = 2. A linear Gray map φ from 
N4→Z2

2

 is defined 

by φ(x + 2y) = (y, x + y), for all x + 2y in N. The image φ(C), of a linear code C over N of length n by the 

Gray map is a binary code of length 2n with same cardinality [15]. 

 

Any DNA linear code C  over N is equivalent to a code with Generator Matrix(GM) of the form  

                                                    















2D2I

BAI=GM

1
k

k

0

0
  

Where A, B and D are matrices over N. Then the DNA code C contains all DNA code words [v0, v1] GM, 

where v0 is a vector of length k1 over N and v1 is a vector of length k2 over Z2. Thus C contains a total of 

4k1 2k2 code words. The parameters of C are given [n, 4k12k2, d], where d represents the minimum lee 

distance of C.  

 A DNA linear code C over N of length n, 2-dimension k, minimum lee distance d is called an [n, k, dl] or 

simply an [n, k, d] code. In this paper, define the covering radius of dna codes over N with respect to lee 

distance and in particular study the covering radius of Simplex DNA codes of type α and type β namely, 

Sα and Sβ and their MacDonald DNA codes and repetition DNA codes over N. Section 2 contains basic 

results for the covering radius of DNA codes over N. Section 3 determines the covering radius of 

different types of repetition DNA codes. Section 4 determines the covering radius of Simplex DNA codes 

and finally section 5 determines the bounds on the covering   radius of MacDonald DNA codes.  
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Covering Radius of Repetition DNA Codes 

Let  d  be a lee distance  of  a DNA code C over  N. Thus, the covering radius of C: 

The following result of Mattson [6] is useful for computing covering radius of codes over rings 

generalized easily from codes over finite fields. 
 

Proposition 3.1 If C0 and C1 are codes over R generated by matrices GM0 and GM1 respectively and if C 

is the code generated by   

                                                                           















AGM

GM=GM

0

10  

 then rd (C) ≤ rd(C0) + rd(C1) and the covering radius of D (concatenation of C0 and C1 ) satisfy the 

following rd (D) ≥ rd (C0) + rd (C1), for all distances d over N.  

 

A q-ary repetition code C over a finite field Fq = {α0 = 0, α1 = 1, α2 , α3 , . . . , αq−1 } is an [n, 1, n]  code 

C= {α}|α∈ (Fq)where α= (α,α,⋯ ,α) . The covering radius of C is 
⌈
n(q− 1)

q
⌉

 [11]. Using this, it can 

be seen easily that the covering radius of block of size n repetition code [n(q-1),1,n(q-1)] generated by   

 

  

 

is 
⌈
n(q− 1)

2

q
⌉

 , since it will be equivalent to a repetition code of length (q−1)n.   

 

Consider the repetition dna  code over N. There are two types of them of length n vi 

1. Cytosine repetition code Cβ : [n, 1, n] generated by GMβ=  
[CC⋯C⏞

n

]
 

2.  Thymine repetition code Cα : (n, 2, 2n) generated by GMα = 
[TT⋯T⏞

n

]
 

 

Theorem 3.2  Let Cβ and Cα be  the  dna code of type β and α type in generator 

matrices GMβ and GMα . Then, 
⌊n2⌋

 ≤ r (Cα ) ≤ n  and   r(Cβ) =n. 

 



On the Covering Radius of DNA Code Over N 

100 
AJMS/Apr-Jun 2023/Volume 7/Issue 2 
 

Proof.  

Let x= AA⋯ A⏞
⌊n2⌋

TT⋯T⏞
⌈n2⌉

 and the code of C = {A A · · · A, T T · · · T } is generated by 

[T T …. T] is an [n, 1, 2n] code. Then, d(x, A A … A) = wt(x - A A  … A) = 
⌊n2⌋

 and  

d(x, T T...T) = wt(x - T T … T) = 
⌈n2⌉

. Therefore,  d(x, Cα) = min{
⌊n2⌋

, 
⌈n2⌉

}. Thus, by definition  of  covering 

radius                  

r (Cα)⩾⌈n2⌉
                                                                                                              (3.1) 

 

Let x be any word in Nn . Let us take x has ω0 coordinates as 0’s, ω1 ,  coordinates as 1’s, 

ω2 coordinates as 2’s, ω3 coordinates as 3’s, then ω0 + ω1 + ω2 + ω3 = n. Since Cα = {AA 

· · · A, T T · · · T} and lee weight of N : A is 0, C and G is 1 and T is 2.  

Therefore, d(x, AA · · · A) = n − ω0  + ω2  and  

                  d(x, T T · · · T ) = n − ω2 +ω0  .  

Thus d(x, Cα ) = min {n − ω0 + ω2 , n − ω2 +  ω0 } and hence, d (x, Cα) ≤ n  = n.           (3.2) 

 

Hence, from the Equation (3.1) and (3.2),  so 
⌈n2⌉

≤ r (Cα) ≤ n.  Now, obtain the covering 

radius of Cβ covering with respect to the lee weight.  

 Then d(x, AA · · · A)  =   n − ω0 + ω2,  

          d(x, CC · · · C)  =   n − ω1 + ω3,  

          d(x, T T · · · T ) =   n − ω2 + ω0 and  

          d(x, GG · · · G)  =  n − ω3 + ω1, for any x ∈ Nn . 

 

This implies d(x, Cβ ) = min{n − ω0 + ω2, n − ω1 + ω3 , n − ω2 + ω0 ,   n − ω3  + ω1 } = n  

and hence  r(Cβ ) ≤ n. 

 

Let x= AA⋯ A⏞
t

CC⋯C⏞
t

TT⋯ T⏞
t

GG⋯G⏞
n−3t

, where 
t=⌊n4⌋

 . Then d(x, AA · · · A) = n, 

 d(x, CC · · · C) = 2n − 4t,  d(x, T T · · · T ) = n and d(x, GG · · · G) = 4t.  Therefore  

 r(Cβ) ≥  min{2n, 2n − 4t, 4t} ≥ n. 

 

Block Repetition Code 

 

Let GM=[CC⋯C⏞
n

TT⋯T⏞
n

GG⋯G⏞
n

]
 be a generator matrix of N in each block of repetition code length is 

n. Then, the parameters of Block Repetition Code(BRC) is [3n, 1, 4n]. The code of BRC = {c0 = A · · · 

AA · · · AA · · · A, c1 = C · · · C T · · · T G · · · G, c2 = T · · · T A · · · AT · · · T, c3 = G · · · GT · · · T 

C · · · C}, dimension of BRC is 1 and lee weight is 4n. Note that, the block repetition code has constant 

lee weight is 4n. Obtain, the following 

 

Theorem 3.3 r(BRC3n) = 3n. 

 

Proof.   
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Let x = AA · · · A ∈  N3n .  Then, d(x, BRC3n ) = 3n. Hence by definition,  

r( BRC3n) ≥ 3n. 

Let x = (u|v|w) ∈  N3n with u, v and w have compositions (r 0 , r1 , r2 , r3 ) ,(s0 , s1 , s2 , s3 ) 

and (t0 , t1 , t2 , t3 ) respectively such that 
∑
i= 0

3

r
i
=∑

i= 0

3

s
i
=n=∑

i= 0

3

t
i

.   

Then, 

  d(x, c0 ) = 3n − r0 + r2 − s0 + s2− t0 +t2 , 

  d(x, c1 ) = 3n − r 1 + r3− s2 + s0 − t3 + t1 , 

  d(x, c2 ) = 3n − r2 + r0 − s0 + s2 − t2 + t0  and 

  d(x, c3 ) = 3n − r3 + r1 − s2 + s0 − t1 + t3. 

Thus,  

            d(x, BRC3n) = min{3n − r0 + r2 − s0 + s2− t0 +t2 ,3n − r 1 + r3− s2 + s0 − t3 + t1 , 

                                           3n − r2 + r0 − s0 + s2 − t2 + t0 , 3n − r3 + r1 − s2 + s0 − t1 +t3.}  

             d(x, BRC3n) ≤ 3n and hence, r (BRC3n) ≤ 3n. 

               

               Define a two block repetition dna code over N of each of length is n and the parameters of 

two block repetition cod BRC2n : [2n, 1, 2n] is generated by 

GM=[CC⋯C⏞
n

TT⋯T⏞
n

]
  . Use the above and obtain a following 

 

Theorem 3.4   r(BRC2n ) = 2n.                           

 

 Let GM=[CC⋯C⏞
m

TT⋯T⏞
n

]
be the generalized generator matrix for two different block repetition dna 

code of length are m and n respectively. In the parameters of two different block repetition code 

(BRCm+n) are [m + n, 1, min{2m, m + n}] and Theorem 3.4 can be easily generalized for two different 

length using similar arguments to the following. 

 

Theorem 3.5 r(BRCm+n ) = m + n. 

 

Simplex DNA Code of Type α and Type β  over N 

 

In ref.[3] has been studied of Quaternary simplex codes of type α and type  β. Type α Simplex code Sk
α is 

a linear dna code over N with parameters[4k, k] and an inductive generator matrix given by 

 

GMk
α =                                   (4.1) 

  

 

with GM1
α = [A(0) C(1) T (2) G(3)]. Type  simplex code Sk

β is a punctured version of Sk
α with 

parameters [2k−1 , (2k − 1), k] and an inductive generator matrix given by 

 

                                                                              (4.2) 

 

GMk
β   =                                                                                                                              (4.3) 
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and for k > 2, where GMk−1
α is the generator matrix of Sk−1

α . For details the reader is ref. to [3]. 

Type α code with minimum lee weight is 4.  

 

Theorem 4.1 r(Sk
α ) ≤ 22k + 1. 

 

Proof.  

Let x = CC · · · C ∈  Nn . By equation(4.1), the result of Mattson for finite rings and using 

Theorem 3.3, then     r(Sk
α )≤r(Sk−1

α )+< 
(CC⋯C⏞

2
2(k− 1)

TT⋯T⏞
2
2(k− 1)

GG⋯G⏞
2
2(k− 1)

)
 > 

                                                      = r(Sk−1
α )+ 3.22(k−1) 

                                                      = 3.22(k−1) + 3.22(k−2) + 3.22(k−3) + . . . + 3.2 2.1 + r (S1
α )  

                                          r (Sk
α ) ≤ 22k + 1 (since r(S1

α ) = 5) . 

 

 

Theorem 4.2 r(Sk
β ) ≤ 2k(2k − 1) − 1. 

 

Proof. 

 By equation (4.3), Proposition 3.1 and Theorem 3.5, thus 

r(Sk
β) ≤ r (Sk−1

β)+< 
(CC⋯C⏞

4
(k− 1)

TT⋯T⏞
2
(2k−3)

− 2
(k− 2)

)
 > 

=  r(Sk−1 
β)+ 2(2k−2) + 2(2k−3) − 2(k−2) 

≤ 2( 2(2k−2) + 2(2k−4) + . . . + 24) + 2(2(2k−3) + 2(2k−5) + . . . + 23) − 

2( 2(k−2) + 2(k−3) + . . . + 2) + r(S2 
β) 

r(Sk
β ) ≤2k-1(2k- 1)-1, (since r(S2 

β) = 5). 

 

MacDonald DNA Codes of Type α and β   Over N 

 

The  q-ary MacDonald code  Mk,t(q) over the finite field Fq is a unique [(qk – qt)/(q -1), k, qk-1-qt-1] code 

in which every non-zero codeword has weight  either qk−1 or qk−1 − qt−1 [10].  In [13], he studied the 

covering radius of MacDonald codes over a finite field. In fact, he has given many exact values for 

smaller dimension. In [8], authors have defined the MacDonald codes over a ring using the generator 

matrices of simplex codes. For 2 ≤ t ≤ k − 1, let GMk,t
α be the matrix obtained from GMk

α by deleting 

columns corresponding to the columns of GMt
α .  

That is,  GMk,t
α  = [GMk,

α  \    0 /(GMt,
α) ]                                            (5.1) 

 

and let GMk,t
β be the matrix obtained from GMk

β by deleting columns corresponding to the columns of 

GMt
β . 

 

 That is, GMk,t
β  = [GMk

β \    0 /(GMt
β) ]                                                                                        (5.2) 

 

where [A\B] denotes the matrix obtained from the matrix A by deleting the columns of the matrix B 

and 0 is a (k − t) × 22t((k − t) × 2t−1 (2t − 1)) . The code generated by the matrix GMk,t
α is called code of 

type α and the code  generated by the matrix GMk,t
β is called Macdonald code of type β. The type α 

code is denoted by Mk,t
α and the type β code is denoted by Mk,t

β. The Mk,t
α code  is  

[4k − 4t , k] code over N and Mk,t
β is a [(2k−1 − 2t−1)( 2k + 2t − 1) , k]  code over N. In fact, these codes 
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are punctured code of Sk
α and Sk

β respectively. Next Theorem gives a basic bound on the covering 

radius of above Macdonald codes. 

 

 

Theorem 5.1 r(Mk,t
α )≤ 22k − 22r + r(Mr,t

α ), for t < r ≤ k. 

 

Proof.   

In equation(5.1), Proposition 3.1 and Theorem 3.3, thus 

r(Mk,t
α ) ≤ r(Sk−1

α )+< 
(CC⋯C⏞

2
2(k− 1)

TT⋯T⏞
2
2(k− 1)

GG⋯G⏞
2
2(k− 1)

)
 > 

= 3.4k−1 + r(Mk−1,t 
α),  for k ≥ r > t. 

≤ 3.4k−1 + 3.4k−2 + · · · + 3.4r + r(Mr,t 
α),  for k ≥ r > t. 

r(Mk,t
α ) ≤ 22k − 22r+ r(Mr,t 

α),  for k ≥ r > t. 

 

Theorem 5.2  r(Mk,t
β) ≤ 2(k−1)(2k − 1) + 2(r−1) (1 − 2r) + r(Mr,t 

β) , for t < r ≤ k. 

 

Proof.  

Using Proposition 3.1, Theorem 3.5 and in equation(5.2), obtain 

 

r(Mk,t
β) ≤ r (Mk−1,t

β)+< 
(CC⋯C⏞

4
(k− 1)

TT⋯T⏞
2
(2k−3)

− 2
(k− 2)

)
 > 

 

 

r(Mk,t
β) ≤ 2(k−1)(2k − 1) + 2(r−1) (1 − 2r) + r(Mr,t 

β) , for t < r ≤ k. 
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