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ABSTRACT 

One of the primary fields of mathematics, graph theory is an intriguing and exciting subject. A network is 

represented mathematically by a graph, which identifies the connections between nodes and edges. One 

of the fascinating areas of mathematics is Graph Theory. A large area of graph theory is called 

dominance in graphs. Claude Berge formalised dominance as a theoretical field in graph theory. 

Domination is one of the fascinating and active areas of Graph Theory research. In this paper, we first 

provide basic definitions, outlining both core ideas and certain dominant concepts. In specifically, 

Tenement graphs, a novel type of graph, are defined. Tenement graphs' Split and Non-Split Domination 

Numbers are addressed. 
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INTRODUCTION 

 
A network is represented mathematically by a graph, which identifies the connections between nodes and 

edges[1]. A graph contains points and edges which consists of objects such as edges, arcs, and lines[6]. 

Around the 1950s, the research of Domination in Graphs got underway. In 1958, Claude Berge 

formalised dominance as a theoretical domain in graph theory. The phrases "dominating set" and 

"dominance number" were later introduced by Oystein Ore in his book on graph theory published in 

1962[4]. In a graph G, the term "dominating set" refers to a set D of vertices where each vertex has 

adjacent in D. Applications for dominance in facility location issues are numerous[10]. 

 

 

BASIC DEFINITIONS 

 

Definition 2.1: 
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If every vertex in G is taken over by a minimum of one vertex in set D, then set D is a dominating set of 

G[2]. The dominance number of a graph is the size of the lowest dominant set and is represented by the 

symbol γ(G)[6]. 

 

Definition 2.2: 

 

If the induced subgraph "V-D" is not connected, a dominating set D is said to be split. Split Domination 

number[7] is the term used to describe the minimal cardinality of a Split dominating set. Its symbol is γ 

(G). G* is used to identify the induced subgraph. 

Example: 

 
Vertex set, V ={a,b,c,d,e } 

Minimum dominating set, D = {a,c} 

V-D = {b,d,e} 

The induced subgraph is denoted as G*. 

 
The induced subgraph G* is disconnected. Therefore D is said to be a split dominating set  

Hence, γs (G)=2 

 

Definition 2.3: 

 

If the induced subgraph <V-D> is connected, a dominating set D of G is a non-split dominating set[8]. 

The non-split dominating set's least cardinality is known as the Non-split dominating number[9] and is 

indicated by the symbol ns(G).G* is used to identify the induced subgraph. 

Example: 

 
Vertex set, V = { a,b,c,d,e} 

Minimum dominating set, D = {d} 

Induced subgraph <V-D> is denoted  as G*   
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The induced subgraph G* is disconnected. Therefore D is said to be non split dominating set  

γns(G) = 1   

 

Definition 2.4: 

 

Tenement graph is a graph which consists of exactly three vertex sets namely Top vertex set T, Mid 

vertex set M and Bottom vertex set B such that three non-adjacent vertices are of degree 2 and all other 

vertices are of degree 3. It is denoted as TP graph where p is the number of vertices. 

 
Top vertex set, T = {t} 

Mid vertex set, M = {m1,m2,m3}  

Bottom vertex set, B= {b1,b2,b3} 

Here, three non-adjacent vertices have degree two and all the other vertices have degree three. 

 

 

SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS 

 

 

 
p = 7, q = 9 

Vertex set, V = {t,m1,m2,m3,b1,b2,b3} 

Split dominating set D = { m1,m2,m3} 
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Induced subgraph <V-D> is denoted  as T7*         

γs(T7) = 3 

 
 

p=9; q=12  ;    

Vertex set, V = {t,m1,m2,m3,,m4,b1,b2,b3,,b4} 

Minimum Split dominating set D = { m1,b3,m4}. 

The Induced subgraph <V-D> is denoted  as T9*. Hence,  γs(T9) = 3 

 

 
 

p=11;  

q=15 

Vertex set, V = {t,m1,m2,m3,m4,m5,b1,b2,b3,b4,b5} 

Split dominating set D = { m1,b3,m5}.  

The Induced subgraph <V-D> is denoted  as T11*       

 γs(T11) = 3    
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p=13,q=18 

Vertex set, V = {t,m1,m2,m3,m4,m5,m6,b1,b2,b3,b4,b5,b6 } 

Split dominating set D = { m2,b1,b4,m6}. The Induced subgraph <V-D> is denoted  as T13*       

γs(T13) = 4  

 

Continuing like this, we get as follows 

   

 

RESULTS:  

 

For TP  such that p is odd, 

γs(Tp)=⌡p/3⌡-0 ; 9≤p≤17 & p=23 

γs(Tp)=⌡p/3⌡-1; 19≤p≤21 , 29≤p≤31 & p=25 

γs(Tp)=⌡p/3⌡-2; 33≤p≤41, p=27 

  

Theorem 3.1 : 
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For every Tenement graph, Mid vertex set M is a split dominating set  

 

Proof:  
          Let Tp be a tenement graph with order p and size q. Let V be the set of all vertices of the graph TP 

 such that |V|= p 

Three vertex sets, designated as top vertex set T, middle vertex set M, and bottom vertex set B, make up 

each Tenement graph. We know that |T|=1 and Order of Mid vertex set is equal to order of Bottom vertex 

set 

(i.e) |M|=|B| 

 

Additionally, each vertex in M is next to the matching vertex in B. 

This suggests that every one vertex'm' in M is related to a vertex 'b' in B. 

M therefore outweighs B. M also outweighs T. 

When M is absent, T and B become disjointed since M dominates both of them. 

The induced subgraph <V-M>  is a disconnected graph 

This implies M is a split dominating set 

Hence the proof 

 

Theorem 3.2:  

 

Every Mid vertex set M in Tp is split dominating but |M| is not a split Domination number for all 

Tenement graphs 

 

Proof: 

 

Consider the tenement graph T9    

  

 

Here M={m1,m2,m3,m4} 

By the previous theorem 3.1, M is a split dominating set in T9 

But there exists another set D ={m1,b3,m4}which dominates all other vertices and also <V-D> is a 

disconnected graph 

The smallest possible cardinality of a split dominating set is referred to as a split domination number by 

the definition. 

Although M and D are both split dominant sets in this case, |M|=4 and |D|=3 

|D|<|M|. Therefore, |D| is the split domination number of T9    

Hence, |M| is not a split domination number for all Tenement graphs 

 

NON SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS 
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p = 7, q = 9   

Vertex set, V = {t,m1,m2,m3,b1,b2,b3} 

Minimum Non Split dominating set D = {t,b2} 

Induced subgraph <V-D> is denoted  as T7* and it is connected            

 γns(T7) = 2 

 

 

 
 

p=9; q=12 

Vertex set, V = {t,m1,m2,m3,m4,b1,b2,b3,b4} 

Minimum Non Split dominating set D = { t,b2,b3} 

 Induced subgraph <V-D> is denoted  as T9* and it is connected               

 

 γns(T9) = 3 
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p=11; q=15 

Vertex set, V = {t,m1,m2,m3,m4,m5,b1,b2,b3,b4,b5} 

Minimum Non Split dominating set D = { b1,b5,m3,m5} 

Induced subgraph <V-D> is denoted  as T11* and it is connected. γns(T11) = 4 

Continuing like this, we get as follows 

 

 
 

RESULTS: 

For TP  such that p is odd, 

γns(Tp)=⌠p/3⌠-0; 9≤p≤11 

γns(Tp)=⌠p/3⌠-1; 13≤p≤21 

γns(Tp)=⌠p/3⌠-2; 23≤p≤27  

 

CONCLUSION 
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In this paper, we explored split and non-split dominance numbers as well as the concept of a dominance 

number. The newly defined Tenement graph became familiar to us. Tenement graphs' Split and Non-split 

Domination Numbers are calculated and listed. Additionally, various theorems relating to the split 

domination number of Tenement graphs were covered.  
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