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ABSTRACT 
 

This paper seeks to formulate a more accurate forward-backward algorithm for solving optimal control 

problems using the 7-stage Runge-Kutta of order 6 (RK6) numerical scheme. The control variable were 

approximated using the interpolating polynomial or spine while the RK6 forward and backward sweeps 

were used in approximating the state and adjoint variables respectively because its A-stability, accuracy 

and higher rate of convergence. Three numerical examples were simulated to ascertain the accuracy and 

convergence of the 6th order Runge-Kutta forward-backward sweep method (K6FBSM). It was 

discovered that the RK6FBSM performs better when compared with the Euler and the 4th order Runge-

Kutta Forward-Backward Sweep method RK4FBSM. 
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INTRODUCTION 

Optimal control involves finding control inputs that optimize a particular performance criterion subject to 

system dynamics and constraints
[1]

. The modern formulation of optimal control theory began in the mid-

20th century with contributions from Plethora of authors
[2]

, The Forward Backward Sweep Method 

(FBSM) is an indirect numerical method widely used for solving optimal control problems due to its 

computational efficiency and ease of implementation
[3]

. Reviewed the FBSM for both bounded and 

unbounded control problems, incorporating various numerical schemes such as Euler, trapezoidal, and 

Runge-Kutta techniques
[4]

. The method iteratively solves the state equations forward in time and the 

adjoint equations backward in time, updating the control inputs at each iteration
[5]

. The Forward-

Backward Sweep (FBS) method is a popular technique for solving optimal control problems, especially 

those formulated as two-point boundary value problems by iteratively solving the state and costate 

equations forward and backward in time, respectively
[6]

. According to the FBS method is particularly 

effective because it directly integrates the state and costate equations while updating the control policy at 

each iteration
[7]

. The method is proven to be robust and provides accurate solutions for a range of test 

problems, demonstrating its utility in practical applications
[8]

. 
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METHODOLOGY 

The solution to optimal control problems involves the derivation of the optimal control characterization 

and the use of the forward and backward sweep for the state and control trajectories respectively
[9]

. By 

the Pontryagin’s maximum, the optimal control can be analytically derived by the optimality condition 

while the state and control variables can be derived numerically using the Runge-Kutta of order six 

subject to the adjoint and transversality conditions
[10]

. 

1.1: Statement of problem 

We considered the generalized Optimal Control problem given below; 

      (1) 

subject to : x˙1 = g1(t,x1(t),x2(t),...,xn(t),u(t)) (2) 

x˙2 

... 

= g2(t,x1(t),x2(t),...,xn(t),u(t)) (3) 

xn = gn(t,x1(t),x2(t),...,xn(t),u(t)) (4) 

umin ≤ u ≤ umax (5) 

    

Where,    (x1(t0),x2(t0),...,xn(t0)) = (0,0,...,0)
T ∈ Rn

. 

 

The Hamiltonian of the constrained optimal control problem is written as 

 

and the optimality, adjoint and transversality conditions are expressed below respectively as 

 

(Optimality)            (7) 

 

(Adjoint)            (8) 

(Transversality),           (9) 

 

1.2: 6th Order Runge-Kutta Scheme 

The 7-stage Runge-Kutta of order 6 (RK6) iterative scheme was considered for the development of the 

forward-backward sweep Algorithm for the solution of Optimal control problems
[11]

. The RK6 enhances 

the level of accuracy of the results of the optimal control problem with the developed algorithm
[12]

. 
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1.3: Forward-Backward Sweep Method 

The derivation of the forward-backward sweep requires the discretization of state, control, and adjoint 

variables along the knots t0 ≤ t1 ≤ t2 ≤ ··· ≤ tN, such that ) , 

), and λji= λi(t0 − jh) for tk= t0 + kh and h = (T − t0)/N is the 

Step-length with N number of grid-points.Therefore, for any argument xi in the state vector (

and a unit adjoint variable us for s ∈ {1,2,··· ,m} and the forward sweep of the state 

variable using the RK6 method is written as: 

 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

 

for the subscript of each argument i= 1,2,··· ,n, r = 1,2,··· ,m, the counter k = 1,2,··· ,N. and the functions 

gl, l = 1, 2···7 are once continuously differentiable within the time interval [  

and Kil denoting the dynamical function of the i−th component (argument) and the l−th stage. For the 

control characterization, the optimal variable is derived using the optimality condition = 0 such that 
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        (18) 

The interpolating polynomial or spline [8] of the control variable us(.) can be computed as the formula; 

      (19) 

The control variable for the forward(+) and backward (-) sweep are approximated respectively as follows; 

      (20) 

The backward sweep of the adjoint variables using the proposed RK6 method requires the discretization 

of the adjoint such that for any argument   with a specific control variable us 

attached to each state equation is expressed thus: 

      (21) 

Deploying the 7-stage RK6 numerical scheme in the discretization of the backward sweep for the adjoint 

variables yields the following: 

 

 

1.4: RK6 Forward-Backward Algorithm for Optimal Control Problem 

Step 1: Initialization Input  

  

Step 2: Forward Sweep for state variables 

Compute while k = 0,1,2,...,N do  from equations (10) to (17) respectively and sequentially. 
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Step 3: Backward Sweep for adjoint variables 

Set j = N + 2 – i and compute λ
j
i
−1 

from equations (22) to (29) respectively Step 4: Control 

Characterization Compute control within bounds  

from equation (18) 

Step 5: Termination criteria 

If termination conditions are met go to step 6 otherwise step 7 

Step 6: Output x
k
i,λ

j
i,u∗

i(∀i,j) and end function Step 7: Return Repeat step 2 

2: Numerical simulations: Implementation and Results 

Example 1: Considering the optimal control problem below  

 

Min J[u] = min∫          
 

 
 

 

 

x
′
(t) = x(t) + u(t), 

 

(30) 

x(0) = 1, x(1) free.   

    

The Hamiltonian function H is defined as H = u(t)
2 

+λ(t)·(x(t)+u(t)) where λ(t) is the adjoint variable (or 

costate). Using the optimality adjoint and transversality conditions yields the analytical (exact) optimal 

solution below: 

x∗(t) = e
t
, u∗(t) = 0.      (31) 

The optimal control obtained using the optimality condition, = 0, is given by 

        (32) 

ascertained to be minimum since   

The derived costate equation using the adjoint conditions, , given by: 

λ
′
(t) = −λ(t), λ(T) = 0        (33) 

Applying the forward Euler, RK4 and the proposed RK6 forward -backward sweep methods (i.e 

RK4FBSM and proposed RK6FBSM respectively) yields the results below. 

Table1: Result of State variable for example 1 

S/N Exact Euler RK4FBSM Proposed RK6FBSM 

 xA xE |xA− xE| xK4 |xA− xK4| xK6 |xA− 

xK6| 
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1 1.1051709181 1.1111111111 5.9401930000 

×10
−3

 

1.1051708333 8.47000 

×10
−8

 

1.1051709181 0.00000 

× 10
0
 

2 1.2214027582 1.2345679012 1.3165143100 

×10
−2

 

1.2214025709 1.87300 

×10
−7

 

1.2214027582 0.00000 

×10
0
 

3 1.3498588076 1.3717421125 2.1883304900 

×10
−2

 

1.3498584971 3.10500×10
−7

 1.3498588076 0.00000 

×10
0
 

4 1.4918246976 1.5241579028 3.2333205100 

×10
−2

 

1.4918242401 4.57600 

×10
−7

 

1.4918246977 0.00000 

×10
0
 

5 1.6487212707 1.6935087808 4.4787510100 

×10
−2

 

1.6487206386 6.32100 

×10
−7

 

1.6487212707 0.00000 

×10
0
 

6 1.8221188004 1.8816764232 5.9557622800 

×10
−2

 

1.8221179621 8.38300 

×10
−7

 

1.8221188004 0.00000 

×10
0
 

7 2.0137527075 2.0907515813 7.6998873800 

×10
−2

 

2.0137516266 1.08090 

×10
−6

 

2.0137527075 0.00000 

×10
0
 

8 2.2255409285 2.3230573125 9.7516384100 

×10
−2

 

2.2255395633 1.36520 

×10
−6

 

2.2255409285 0.00000 

×10
0
 

9 2.4596031112 2.5811747917 1.2157168060 

×10
−1

 

2.4596014138 1.69740 

×10
−6

 

2.4596031112 0.00000 

×10
0
 

10 2.7182818285 2.8679719908 1.4969016230×10
−1

 2.7182797441 2.08430×10
−6

 2.7182818285 0.00000 

×10
0
 

 

Table 1: |xA− xE|, |xA− xK4|and|xA − xK6| ≡ errors of Euler RK4 & RK6 respectively 

 

 

Figure 1: Rate of convergence in 10 iters. 

 

Example 2: Considering the SIS Model with Treatment [9] 

   (34) 

(35) 
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I(0) = I0, I(T)free.       (36) 

The Hamiltonian is given by: 

H(I(t),u(t),λ(t)) = ω1I(t) + u
2
(t) + λ(t)(β(N − I(t))I(t) − (µ + γ)I(t) − u(t)I(t)(37) The optimal control 

obtained using the optimality condition, = 0, is given by 

.      (38) 

ascertained to be minimum since   

The derived co-state equation using the adjoint conditions, , given by: 

λ
′
(t) = −ω1 − λ(t)β(N − I(t)) − βI(t) − (µ + γ) − u(t), λ(T) = 0 (39) 

 

Applying the forward Euler, RK4 and the proposed RK6 forward -backward sweep methods (i.e 

RK4FBSM and proposed RK6FBSM respectively) also yields the results in Table 2 below using the 

following parameters: β = 0.05, µ = 0.01, γ = 0.5, N = 100, ω1 = 1 and T = 1. 

 

Table 2: Result of State and Control variables for example 2 

S/N Euler convergence Proposed RK6FBSM 

 xE uE xK4 uK4 xK6 uK6 

1 10.0000000000 5.2355651638 10.0000000000 4.5926947060 10.0000000000 4.6363573386 

2 8.7650656568 4.6326137300 9.5613737942 4.3167361686 9.5464589222 4.3768363778 

3 8.2556597311 4.1600567381 9.4089685710 4.0418362859 9.3440040276 4.1061078144 

4 8.1851105244 3.7431700492 9.5201882548 3.7594888052 9.3763319652 3.8164326820 

5 8.4592147545 3.3460084781 9.9038244602 3.4602903181 9.6519009702 3.4992076079 

6 9.0673116818 2.9449889133 10.6018768364 3.1325900058 10.2060033528 3.1440596831 

7 10.0557266500 2.5197980734 11.7007294372 2.7604692418 11.1093962855 2.7374992954 

8 11.5303031948 2.0484433716 13.3574883436 2.3201655255 12.4871637697 2.2605946027 

9 13.6800933636 1.5026879752 15.8577984930 1.7728678617 14.5571182701 1.6844954512 

10 16.8306930352 0.8415968385 19.7510850824 1.0482398348 17.7109254612 0.9609642283 

11 21.5547425985 0.0000000000 26.2132226347 0.0000000000 22.7016008493 0.0000000000 
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Figure 2: Rate of convergence in 10 iterations. 

 

Example 3: We considered the model on optimal control and comprehensive cost effectiveness analysis 

for COVID-19 [2] 

   (40) 

 

Subject to the non-autonomous system below 

  (41) 

 

where , 

Ai >0(i= 1,2,3,4). The derived adjoint equations were 

6 4 2 10  8 0 

0  

2  

4  

6  

8  

RK6FBSM  

RK4FBSM  

Euler  
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   (42) 

while the optimal control characterizations were; 

   (43) 

Simulating with the following parameters β1 = 0.1233;β2 = 0.0542;β3 = 0.0020;β4 = 0.1101;δ = 0.1980;τ = 

0.3085;d = 1/(74.87 ∗ 365);d1 = 0.0104;γ1 = 0.3680;γ2 =0;ψ1 = 0.2574;ψ2 = 0.2798;ψ3 = 0.1584;ϕ = 0.3820 

yields the results below. 

Table 3: Convergence analysis of State variable (E(t)) for example 3 

S/N Euler RK4FBSM Proposed RK6FBSM 

 EE  EK4  EK6  

1 1.5000000000 - 1.5000000000  1.5000000000  

11 1.4586854415 2.7646377×10−3 1.4582818367 2.7890189 10-

3 

1.4581829510 2.7953366×10−3 

21 1.4194850125 2.6987961×10−3 1.4187988721 2.7167244 10-

3 

1.4186243717 2.7216273×10−3 

31 1.3821955578 2.6394372×10−3 1.3813219909 2.6520393 10-

3 

1.3810945185 2.6556630×10−3 

41 1.3466385402 2.5859736×10−3 1.3456514066 2.5942269 10-

3 

1.3453892655 2.5968128×10−3 
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51 1.3126570130 2.5378496×10−3 1.3116129021 2.5425930 10-

3 

1.3113294894 2.5443931×10−3 

61 1.2801128162 2.4946384×10−3 1.2790541427 2.4967666 10-

3 

1.2787595421 2.4977039×10−3 

71 1.2488168407 2.4685349×10−3 1.2477535795 2.4713852 10-

3 

1.2474913995 2.4675198×10−3 

81 1.2184644912 2.4616005×10−3 1.2173844274 2.4656931 10-

3 

1.2171894367 2.4600497×10−3 

91 1.1893046217 2.3341404×10−3 1.1885613052 2.2797627 10-

3 

1.1883097475 2.2930852×10−3 

101 1.1685184378 1.2045593×10−3 1.1684734094 1.2114794 10-

3 

1.1676305020 1.2714446×10−3 

 

Figure 3: Convergence of E(t) in 101 iterations. Fig 4: Convergence of B(t) in 101 iterations. 

DISCUSSION OF RESULTS 

In example 1, the rate of convergence of the 3 methods: Euler, RK4 and Rk6 were compared on the state 

variable as demonstrated on table 1. It was discovered that the rate of convergence of the RK6 compares 

favorably with RK4 with higher level of accuracy after 10 iterations. In similar manner, Table 2 and 3 

were used to compare the Iterates for the Euler, RK4 and RK6 forward-backward sweep methods on the 

state variables of examples 2 and 3 respectively. Figures 2, 3 and 4 were used to illustrate the rate of 

convergences which shows that the RK6FBSM performs excellently well although the computational 

efforts is more in terms of rigors of coding and process time. 

 CONCLUSION 

The adaptation of the 6th order Runge-Kutta forward-backward sweep algorithm for solving generalized 

optimal control problems with bounded control arrives at an accurate result at a faster rate of convergence 

compared to the Runge-Kutta of order four (RK4), due to its stability and higher numerical order of 

convergence. This adaptation is essential for handling mathematical models with large number of non-

linear dynamical equations. Therefore, the sixth order Runge-Kutta forward-backward sweep algorithm 
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seeks to provide a more effective and efficient method due to its speed, accuracy, higher rate of 

convergence, suitability and versatility for real-time or practical applications such as the Epidemiological 

and general Biomedical models (see MATLAB code in Appendix). 
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