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ABSTRACT 
 

A one-dimensional model to determine the laminar ow of a fluid in a porous channel with wall suction or 

injection is proposed. The approach is based on the integration of the Navier–Stokes equations using the 

analytical solutions for the two-dimensional local velocity and pressure fields obtained from the 

asymptotic developments at low filtration Reynolds number proposed by Berman [1] and Yuan and 

Finkelstein [2]. It is noticeable that the resulting one-dimensional model preserves the whole ow 

properties, in particular the inertial terms which can affect the wall suction conditions. The model is 

validated in the case of a single porous channel of rectangular or circular cross-section with uniform or 

variable wall suction. Then the model is applied to a two-dimensional multi-channel system which 

consists of a great number of adjacent entrance and exit channels connected by a filter porous medium. 

All existing models aren’t analytical, and need to use complex numerous calculations. The present model 

is a first an attempt to reduce the problem to a simple analytical scheme based on Berman Similarity and 

perturbation series solution method that allows it to be used by general engineers not using complex 

mathematical methods. 
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INTRODUCTION 

 
Numerous filtration systems consist of parallel porous channel bundles, i.e., multi-channel systems. 

Membrane modules used in microfiltration and ultrafiltration are typically multi-channel systems[3,4] Flat-

plate membrane modules, which are the earliest configurations developed for commercial applications, 

use multiple at sheet membranes in a sandwich arrangement consisting of the support plate, the 

membrane and the channel spacer. The hollow fiber modules consist of an array of narrow-bore fibers 

with a dense skin layer at the lumen side of the fiber and a macro-porous matrix for rigidity. The multi-

channel tubular devices are made of individual porous tubes, which support the membranes, placed inside 

a sleeve to form a single tube cartridge. The pleated filters are also multi-channel filtration systems 

developed to arrange large plane filtration area on relatively small base areas [3, 4] 
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All the models discussed above for laminar ow in a porous channel with suction apply to multi-channel 

systems if there is no coupling between the individual channels. 

This statement is incorrect if there is coupling. At this stage, some refinements are required to include the 

coupling in the models. The problem can be considered as coupling of two separate problems; (i) laminar 

ow in a porous channel with wall suction, (ii) laminar ow in a porous channel with wall injection.  

In addition, the common porous wall of the two channels is shared with specific porous media 

characteristics. Thus, a number of models were developed to investigate fluid ow in a unit element of a 

multi-channel filtration system which consists of two coupled channels [5 – 7]. However, these models still 

fail in the case of multi-channel systems with spatial heterogeneities such as spatial distribution of 

entrance ow rates, spatial distribution of channel width, or unexpected plugging of some entrance 

channels for instance. In this latter case, the flow should be modeled for the entire system to account for 

the complex geometry and boundary conditions.  

Moreover, all existing models aren’t analytical, and need to use complex numerous calculations. So, it is 

a first an attempt to reduce the problem to a simple analytical scheme that allows it to be used by general 

engineers not using complex mathematical methods. 

 

Description of the Model 

This study will focus on 2-D fluid flow through channels, where the plane boundary between two 

chambers is permeable with uniform suction/injection.    

The main assumption is that the both chambers are completely identical with the only difference that the 

porous wall is the injection boundary for the first chamber, and for the second one it is the boundary of 

suction. So we may consider the flow in the right chamber at the scheme shown at the Fig. 1; it is shown 

at the Fig. 2. The left chamber has a similar view with the same coordinate system where in the both 

cases, for the both chambers, the -y axis is directed towards the porous wall. Thus the both flows are 

considered in independent coordinate systems, and they are connected only by a common porous 

boundary. 

Note, that the channel of the left camber may have another width 2
h h

. The channel widths 1 2
,  h h h

 

are assumed to be constants.  As shown in the problem geometry below, u  and v  are the velocity 

components which are the functions of x  and y ,   is the dynamic viscosity. For the model problem 

under investigation, we make the following additional assumptions: 

 

(i) Formulate a mathematical model which determines the nature or behavior of the steady 

laminar flow in the channel with one porous wall. 

(ii) The fluid is viscous and incompressible. 

(iii) A two dimensional flow scenario is considered. 

(iv) The flow is driven by combined action of wall suction/injection and pressure gradient. 

(v) A steady state flow situation is considered. 

 

Under the above assumptions, the model equations of motion above reduce to: 

 

2 2

2 2

2 2

2 2

0,

1
,

1
.

u v

x y

u u P u u
u v

x y x x y

v v P v v
u v

x y x x y



 



 

 
 

 

     
           

     
                                                                                 (1.1) 

The boundary conditions may be written in the form 

0,  
y h y h

u v V
 
  

 ,           (1.2a)

0 0
0,  0

y y
u v

 
 

,            (1.2b) 
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Figure 1: The total Scheme 

 

 

 

Figure 2: Identical scheme for the both, left and right chambers. 

 

The initial velocity V  at the porous wall ( 1  is for injection, and 1  is for suction), at y h , may be 

found from,  

 

1 2

y h

P Pk P k P k
V

y    


 
  


          (1.3) 

 

Where, k [
2m ] is the coefficient of permeability, and   is the width of porous wall. We then write the 

equations of motion in a dimensionless form, starting by scaling the variables as follows: 

 
* * * * *( , ) / ( , ),  ( , ) / ( , ),  / ( / )x y h x y u v V u v P V h P   ,       (1.4a) 

1 * 1 */ / ,  / /x h x y h y                    (1.4b) 

The quantities denoted by an asterisk are in non-dimensional form. Substituting the non-dimensional 

quantities (as shown in (1.4a) – (1.4b) above) in the equations of motion (1.1) it will change them to: 

 

  

* *

* *

2 * * *
* * 2 *

* * * 2

2 * * *
* * 2 *

* * 2

0,

1
,

1
.

u v

x y

V u u P V V
u v u

h hx y h x h

V v v P V V
u v v

h y hx h x h

 

 

 

 

 
 

 

     
               

     
                        (1.5) 

 

Dividing through by 
2 /V h  and follow to 

Re
hV

  is the Reynolds number Re we obtain 
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           (1.6) 

 

Where, 
* * / Rep P . Dimensionless form for boundary conditions is form 

 

* *

* *

1 1
0,  1

y y
u v

 
  

           (1.7a) 

* *

* *

0 0
0,  0

y y
u v

 
 

           (1.7b) 

Next, we will omit the asterisks (*) at the superscripts; here 1  is for injection, and 1  – for suction.  

Stream function 

We can define the stream function   for two dimensional flow by expressing the flow velocity as, 

( , , 0)u v   u              (2.1) 

Where, (0, 0, )  . In Cartesian coordinate system this is equivalent to 

,    u v
y x

  
  
              (2.2) 

 

Then, the continuity equation is satisfied identically. 

 

0  0
u u u u

x y x y y x x y

           
          

                  (2.3) 

The total derivative is 

 

d dx dy vdx udy
x y

 


 
    
            (2.4) 

 

Whereby ( , )x y  is a constant along the streamline, then 0d  . Hence, the equation (2.4) may be 

rewritten as 

 

dx dy

u v


 
              (2.5) 

This is the equation which we use to determine a streamline. Streamlines are therefore lines of constant   

and they cannot cross each other except at stagnant points.  

Moreover, we can define a stream function by modifying the Navier-Stokes equations. This can be easily 

done by differentiating the x -momentum equation of the system (1.1) with respect to y and the y -

momentum equation (1.1) with respect to x  and then subtract, so as to eliminate the pressure term. The 

resulting equation becomes: 
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2 2 41
( ) ( ) ( ) 0

Rey x x y

 
  

   
     

             (2.6) 

where 
4  is the 2-D bi-harmonic operator. The associated boundary conditions are 

 

(i) On 0y   
2 2

2 2

2 2

2 2 00
0 0

,  ,

0,  0
y x yy

y y

u v

y y y x x xy x

y x

   

 
 


 

          
        

         

 
    

 
                                               (2.7a) 

(ii) On 1y  : 

1 1 11
0,  1

y xy y yy
u v 

  
     

,       (2.7b) 

 

 ( 1 ) is for injection, and ( 1 ) – for suction. 

 

Berman Similarity 

Consider the Berman problem [8 – 9] where a two-dimensional flow in a channel is considered and 

( , ),  (0, )x y h    . For an incompressible steady-state flow, we consider a stream function in terms 

(2.2). Using Jacobian determinant, our motion expression (2.6) written in terms of stream function may 

be rewritten as, 

 

2 2
2

2 2 4

( ) ( )
( , ) 1

( ) ( ) ( )
( , ) Re

x y

x y y x x y

x y

 
   

  
 

 
 

      
      
     

 

      (2.8) 

 

Suppose 2   , equation (2.8 becomes) 

 

2( , ) 1
( )

( , ) Rex y

 
  


.            (2.9) 

 

Where, 2    is the velocity. We seek for similarity solution of the form ( )xf  , where ,x y  are 

all dimensionless, and y  . Then,  

 

( ),  ,  
x

f xf xf
   

          . 

 

Applying this to equation (2.8) it yields 

 
1Re IVf f ff f

  

               (2.10) 

 

with boundary conditions 

(i) At 0   

0 0 0
0  (0) 0;  0  (0) (0) 0

x yy yy y y
f f f

 
  

  
            .           (2.11a) 

(ii) At 1   

11
0  (1) 0,  1  (1) 1

y x yy
f f 


                (2.11b) 
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due to ( ),  ( ),  ,  
x

xf f xf xf
   

             . 

As a result we obtain the boundary value problem 

 

Re( ) IVf f ff f   
           (2.12a) 

 

(0) 0,  (0) 0,  (1) 1,  (1) 0f f f f               (2.12b) 

 

Pressure gradient 

In many fluid flow problems we consider the speed of the flow at any point to be proportional to the 

change of pressure per unit length and this is what we call the pressure gradient. This implies that the 

flow is always in the direction of decreasing pressure. An adverse pressure gradient occurs when the 

static pressure increases in the direction of the flow. Mathematically this is expressed as 
/ 0dP dx 

. 

The pressure gradient is said to be favorable to the flow when 
0

dP

dx


. Since the fluid in the inner part of 

the boundary layer is relatively slower, it is more greatly affected by the increasing pressure gradient. For 

a large enough pressure increase, this fluid may slow to zero velocity or even become reversed. When 

flow reversal occurs, the flow is said to be separated from the surface. 

 

Pressure gradient is one of the factors that influence a flow immensely and the shear stress caused by 

viscosity has a retarding effect upon the flow. This effect can however be overcome if there is a negative 

pressure gradient offered to the flow. A negative pressure gradient is termed a favorable pressure gradient 

since it enables the flow. A positive pressure gradient has the opposite effect and is termed the Adverse 

Pressure Gradient. 

From the second equation of the system equation (1.2), we have 

 

21

Re

p u u
u v u

x x y

  
    
   .          (3.1) 

Substituting 

 
2

2

( ) ( )( ) ,    ( ) ( )( ) ,

(( ) ) (( )) (( ))

x x y x

xx yy x x

uu xf f xf vu f xf xff

u u u xf x

       

     

   

  

                   

               
                                    (3.2) 

Gives 

 
2( / ) Re Re( )p x x f ff f

  
        
  .                                                                                         (3.3) 

Let us assume 
Re

p

dx
xA


 

 with A  to be the pressure gradient constant. So equation (3.3) has a view, 
2Re( )A f ff f

  
    

           (3.4) 

Remember, that 
/ Rep P

, one obtains 
/ Re

P

dx
xA


 

, and finding A  we will find 

P

dx



 and so  

dimensional

1 12 2

0 0 02 2
( ) ( ) ( / )P x P A x P A x h P P     

.                                                               (3.5) 

The most researches try to resolve the equation (3.4) with the boundary conditions (2.12b). Nevertheless, 

attempts to solve this problem, in contrast with solution of the classical Berman problem with initial 

boundary conditions [8, 9], directly applying the perturbation method, do not lead to success since the 

boundary value problem turns out to be incorrect. The reason is that symmetrical problem is connected 

with the flow between the both porous walls when we have a deal with initial boundary conditions. Note, 
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that numerous attempts to solve this boundary value problem by reducing it to the classical Berman 

problem using the method presented by Terrill [9 – 11] and improved by Cox [12, 13] turns out to be a rather 

complicated matter.  

The solution of the boundary value problem (2.12a) – (2.12b), as it will be shown below, using the well-

known perturbation method, does not require significant difficulties. 

 

Perturbation series solution method 
 

The flow of an incompressible Newtonian fluid through a rectangular micro tube is considered, with x -

axis being in the axial direction as shown in the problem geometry. 

By seeking similarity solution of the form ( )xV f   and /y h   we have shown that the Navier-

Stokes equations can be reduced to (compare with (2.12)):  

 

Re( ) 0IVf ff f f     ,            (4.1a) 

(0) 0,  (0) 0,  (1) 1,  (1) 0f f f f      .         (4.1b) 

 

Equation (4.1a) can be solved by perturbation series method, by seeking the solution in the form of power 

series in Re . That is, 

 

0

( ) ( ) Rek

k
k

f f 




             (4.2) 

 

For small Re  (let say for the first two terms), the higher powers of Re  such as 2 3Re , Re ,..., Re ,...n  will 

also give us very small values of Re , therefore, they can be neglected or approximated to zero. Hence, 

equation (4.2) above reduces to: 

 
2 3

0 1 2
( ) Re Re (Re )f f f f      O ,          (4.3) 

  

which implies that those which are in higher powers or Re  are negligible. Introducing (4.2) into (4.1a), 

equating the coefficients at the same Reynolds numbers degrees, and after neglecting the terms with 

powers 3n  , 

 
2

0 1 1 0 1 0 1

0 1 0 1 0 1 0 0 0 0

2

1 0 0 1 1 0 0 1

Re Re Re( Re)( Re)

    Re( Re)( Re) Re Re( )

    Re ( ) ( ) 0,

IV IV IV

IV IV

f f f f f f f

f f f f f f f f f f

f f f f f f f f

      

            

             
 
We obtain 

 

0

1 0 0 0 0

2 1 1 1 1 1 0 0 1

0,  

0,  

( ) ( ) 0, ...

IV

IV

IV

f

f f f f f

f f f f f f f f f



    

         

         (4.4) 

 

Zeroth order equation: When we substitute solution (4.3) in equation (4.1a) and collecting the 

coefficients of like powers of Re , it will reduce to the zeroth and first order equations of the form: 

 

0
0IVf  ,              (4.5a) 

 

with the boundary conditions 
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0 0 0 0
(0),  (0) 0,  (1) 1,  (1) 0f f f f     ,         (4.5b) 

 

Where, the upper and bottom signs " "  or " " , there and bellow, correspond to the both cases, 

“injection” (upper signs) and “suction” (bottom signs), accordingly. Integrating the equation (4.5a) gives 

 

0 0 0 0 1

1 2

0 0 1 22

1 13 2

0 0 1 2 36 2

,  ,  

,  

f C f C C

f C C C

f C C C C



 

  

   

   

   

           (4.6) 

 

Using the boundary conditions (4.5a) give algebraic equations for 
0 1 2 3
, , ,C C C C , which define 

coefficients of integration 

 

0 3

0 2

1 1

0 0 1 2 36 2

1

0 0 1 22

(0) 0  0

(0) 0  0

(1) 1  1

(1) 0  0.

f C

f C

f C C C C

f C C C

  

   

       

     

         (4.7) 

 

As a result 
0 1 2 3

12,  6,  0C C C C     , and hence, 

 

3 2 2

0 0 0 0
(2 3 ),    6( ),    6(2 1),   12f f f f                  (4.8) 

 

Note, that 
3 2

0
2 3f      is for injection, and 

3 2

0
2 3f     is for suction. 

 

First order equation: The solution 
1

f  may be found from the problem (4.4b) – (4.5b), 

 

1 0 0 0 0

1 1 1 1

0

(0) (0) (1) (1) 0.

IVf f f f f

f f f f

    

    
 

 

Substitution 
0

f  from (4.8) gives, 

 
3 2 2

0 0 0 0

3 2 3 2

3 2 3 2 3 2

(2 3 )( 12) 36( )(2 1)

            12(2 3 ) 36(2 3 )

            24 36 72 108 36 12(4 6 3 ).

f f f f     

    

       

        

     

          
 
Hence,  

3 2

1 0 0 0
( ) 12(4 6 3 )IVf f f f f           ,         (4.9a) 

1 1 1 1
(0) (0) (1) (1) 0.f f f f                (4.9b) 

 

Integration the equation (4.9) gives, 

 
34 3 2

1 02

1 1 15 4 3

1 0 15 2 2

1 1 1 16 5 4 2

1 0 1 230 10 8 2

1 1 1 1 17 6 5 3 2

1 0 1 2 3210 60 40 6 2

12( 2 ) ,

12( ) ,

12( ) ,

12( ) ,

f C

f C C

f C C C

f C C C C

  

   

    

     

   

    

      

      

        (4.10) 
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Using the boundary conditions from (4.9a) gives algebraic equations for 
0 1 2 3
, , ,C C C C , which define 

coefficients of integration 

1 3 1 2

11 7 1 7 1

1 0 1 1 0 170 360 2 10 2

(0) 0  0,    (0) 0  0,

(1) 0  0,    (1) 0 0.

f C f C

f C C f C C

     

         
     (4.11) 

 

Hence,  
7 11

0 1180 70
C C   , 

7

0 1 5
2C C   . 

 

As a result we obtain 
19 83 1577 7 1577 441 7885 3722

0 17 9 63 10 126 630 315
,  C C

 
         , and so 

 
2 1 3 1577 18617 6 5 3 2

1 35 5 10 378 315
f          .         (4.12) 

 

Second order equation: The solution 
1

f  may be found from the problem (4.4b) – (4.5b), 

 

2 1 1 1 1 1 0 0 1

2 2 2 2

0

(0) (0) (1) (1) 0.

IVf f f f f f f f f

f f f f

         

    
 

 

Substitution 
0

f  from (4.8) and 
1

f  from (4.12) gives, 

 

1 2 3 1577 1861 6 15777 6 5 3 2 4 3 2

1 1 1 1 5 7 2 378 315 5 63

6 1 5 1577 3722 6 1577 37226 5 4 2 5 4 3

5 3 4 126 315 5 63 315

48 2611

175

( ) (10 20 15 )

           ( ) (2 5 5 )

           (

f f f f        

        



               
   
             
   

  
4 132 306 1212 10103 1577 1488810 9 8 7 6 5 4

175 35 10 189 3155 21 105

2486929 2934797 138532843 2

7938 6615 99225
              ),

      

  

      

  
  

 (4.13a) 

 




1 2 3 1577 18617 6 5 3 2

1 0 0 1 5 7 2 378 315

6 1577 3722 2 2 3 1577 37222 5 4 3 7 6 5 3 2

5 63 315 5 7 2 189 315

6 1577 3722 162 5 4 3 7

5 63 315 7

12 ( )

6( ) (2 5 5 ) 6 ( )

( ) (2 5 5 ) 6 8

f f f f     

          

       

         
 

                
   

        
   57 1577 37226 5 4 2

5 63 315
6 .      

 

(4.13b) 

Follow to 

 
2 1 3 1577 1861 2 6 3 1577 37227 6 5 3 2 6 5 4 2

1 135 5 10 378 315 5 5 2 126 315

12 1577 3722 15775 4 3 4 3 2

1 15 63 315 63

,   ,

6 6 ,        12 24 18 ,

f f

f f

         

      

         

         
   (4.14) 

 

and (4.8) we obtain for injection: 

 
48 264 132 306 460 16154311 10 9 8 7 6

1 1 1 1 1 0 0 1 175 175 35 10 63 3155

15067 18868 2486929 3928307 208878645 4 3 2

105 105 7938 6615 99225

(

                            ),

f f f f f f f f      

    

               

    
     (4.15a) 

and for suction: 
48 264 132 306 1268 14133711 10 9 8 7 6

1 1 1 1 1 0 0 1 175 175 35 10 63 3155

703 11108 2486929 1941287 68187045 4 3 2

105 105 7938 6615 99225

(

                            ).

f f f f f f f f      

    

               

    
    (4.15b) 
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Hence, we have the next two boundary value problem for the both cases, injection and suction, 

accordingly 

 

48 264 132 306 460 161543 15067 1886811 10 9 8 7 6 5 4

2 175 175 35 10 63 3155 105 105
2486929 3928307 208878643 2    ,

7938 6615 99225

IVf        

  

        

  

       (4.16a) 

 

 
48 264 132 306 1268 141337 703 1110811 10 9 8 7 6 5 4

2 175 175 35 10 63 3155 105 105

2486929 1941287 68187043 2

7938 6615 99225
    .

IVf        

  

        

  
   (4.16b) 

 

with the boundary conditions (4.9b). 

Integrations the equations (4.16a) and (4.16b) for injection and suction, correspondingly, give, 

 
48 264 132 153 460 161543 15067 1886811 10 9 8 7 6 5 4

2 175 175 35 5 63 3155 105 105

2486929 3928307 208878643 2

7938 6615 99225

4 24 66 17 101 161543 1506712 11 10 9 8 7

2 175 175 175 5 126 22085 630

    ,

IVf

f

       

  

      

        

  

      
188686 5

525

2486929 3928307 104439324 3 2

031752 19845 99225

4 12 6 17 101 161543 15067 943413 12 11 10 9 8 7 6

2 2275 175 175 50 1134 176680 4410 1575

2486929 3928307 104439325 4

158760 79380 29

    ,

    

C

f



  

       

 

 

   

        

   3

0 17675

2 2 1 17 101 161543 15067 943414 13 12 11 10 9 8 7

2 15925 2275 350 550 11340 1590120 35280 11025

2486929 3928307 2610983 16 5 4 2

0 1 2952560 396900 297675 2

2 1 115 14

2 79625 15925 455

,

   ,

C C

f

C C C

f

 

       

    

 

 

         

     

  
17 101 10103 15067 471713 12 11 10 9 8

0 6600 124740 15901200 317520 44100

2486929 2934797 3463321 1 17 6 5 3 2

0 1 2 36667920 2381400 1488375 6 2
   ;C C C C

     

     

     

      

 

(4.18a) 

 
48 264 132 153 1268 141337 703 1110811 10 9 8 7 6 5 4

2 175 175 35 5 63 3155 105 105

2486929 1941287 68187043 2

7938 6615 99225

4 24 66 17 317 20191 703 111012 11 10 9 8 7 6

2 175 175 175 5 126 3155 630

    .

IVf

f

       

  

      

        

  

       
8 5

525

2486929 1941287 34093524 3 2

031752 19845 99225

4 2 6 17 317 20191 703 555413 12 11 10 9 8 7 6

2 2275 175 175 50 1134 25240 4410 1575

2486929 1941287 34093525 4 3

0 1158760 79380 297675

    ,

    

C

f

C C



  

       

   



   

         

    
2 2 1 17 317 20191 703 555414 13 12 11 10 9 8 7

2 15925 2275 350 550 11340 227160 35280 11025

2486929 1941287 852338 16 5 4 2

0 1 2952560 396900 297675 2

2 1 1 17 3115 14 13 12

2 238875 15925 4550 6600

,

   ,

f

C C C

f

       

    

   

         

     

    
7 20191 703 277711 10 9 8

124740 2271600 317520 44100

2486929 1941287 852338 1 17 6 5 3 2

0 1 2 36667920 2381400 1488375 6 2
   .C C C C

   

     

   

      

 

(4.18b) 

 

Using the boundary conditions from (4.17) we obtain algebraic equations for 
0 1 2 3
, , ,C C C C ,  

 

2 3 2 2
(0) 0  0;          (0) 0  0,f C f C       
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for injection :
2 1 1 17 101 10103 15067 4717

2 79625 15925 4550 6600 124740 15901200 317520 44100

2486929 2934797 3463321 1 1

0 1 2 36667920 2381400 1488375 6 2

1 1

06

(1) 0  

               0,  

                 

f

C C C C

C

         

       


2550499316977

12 1671295626000

2 2 1 17 101 161543 15067 9434

2 15925 2275 350 550 11340 1590120 35280 11025

2486929 3928307 2610983 1

0 1 2952560 396900 297675 2

                  

,

(1) 0  

               0,

C

f

C C C

 

          

      
1 428661712069

             
0 12 214880866200

.C C  

   (4.17a) 

for suction :
2 1 1 17 317 20191 703 2777

2 238875 15925 4550 6600 124740 2271600 317520 44100

2486929 1941287 852338 1 1

0 1 2 36667920 2381400 1488375 6 2

                              

(1) 0  

              0,

f

C C C C

         

       
1 1 2744265969017

0 16 2 15041660634000

2 2 1 17 317 20191 703 5554

2 15925 2275 350 550 11340 227160 35280 11025

2486929 1941287 852338 1

0 1 2952560 396900 297675 2

                 

,

(1) 0  

              0,

C C

f

C C C

  

          

      
1 209955868999

             
0 12 214880866200

.C C  

    (4.17b) 

 

After trivial calculations we obtain  

 

For injection : For suction :
1 1 2550499316977 1 1 2744265969017

6 0 2 1 1671295626000 6 0 2 1 15041660634000

1 428661712069 1 210050322127

2 0 1 214880866200 2 0 1 214880866200

2 3 2 3
0 0

C C C C

C C C C

C C C C

     

     

   

        (4.18) 

 

and the coefficients 
0 1 2 3
, , ,C C C C  for the both cases are reduced at the table, 

For injection : For suction :
3975666965189 9208378891896

0 626735859750 0 2506943439000

38857161713549 6464112922879

1 7520830317000 1 7520830317000

2 3 2 3
0 0

C C

C C

C C C C

   

   

   

           (4.19) 

 
for injection :

2 1 1 17 101 10103 1506715 14 13 12 11 10 9

2 79625 15925 4550 6600 124740 15901200 317520

4717 2486929 2934797 3463321 3975666965189 38857168 7 6 5 3

44100 6667920 2381400 1488375 3760415158500

f       

    

       

     
1713549 2

15041660634000
;

    (4.20a) 

 

for suction :
2 1 1 17 317 20191 70315 14 13 12 11 10 9

2 238875 15925 4550 6600 124740 2271600 317520

2777 2486929 1941287 852338 1534729815316 6464112922878 7 6 5 3

44100 6667920 2381400 1488375 2506943439000

f       

    

       

     
9 2

15041660634000
.

    (4.20b)   

 

Finally, our main results can be reduced by few simple analytical expressions to obtain u  and v  taking 

into account the relationships (1.4) between dimensional and dimensionless quantities, 
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due to  

For injection : with and

* *

* *

2 3 2 3

0 1 2 0 1 2

1

3 2

0

/ ( / ) ( ),  / ( ),

( / ) ( ,  ( );

Re Re (Re ),  Re Re (Re )

( , ) ( ).

 /   ,

2 3 ,   

u y x h f v dx f

u u V V x h f v v V V f

f f f f f f f f

x xf

y h h h

f





   

 

  



 

        

      

             



 

  

Oo Oo 

 

2

0

2 1 3 1577 1861 2 6 3 1577 37227 6 5 3 2 6 5 4 2

1 135 5 10 378 315 5 5 2 126 315

2 1 1 17 101 10103 15067 471715 14 13 12 11 10 9 8

2 79625 15925 4550 6600 124740 15901200 317520 44100

248

 6( ),

,    ,

   

f

f f

f

 

         

       

   

         

        


6929 2934797 3463321 3975666965189 388571617135497 6 5 3 2

6667920 2381400 1488375 3760415158500 15041660634000

2 2 1 17 101 161543 15067 943414 13 12 11 10 9 8 7

2 15925 2275 350 550 11340 1590120 35280 11025

,

f

    

       

   

        
2486929 3928307 2610983 3975666965189 388571617135496 5 4 2

952560 396900 297675 1253471719500 7520830317000
   ;    



    

   (4.21a) 

 

For suction : with and
2

3 2 2

0 0

2 1 3 1577 1861 2 6 3 1577 37227 6 5 3 2 6 5 4 2

1 135 5 10 378 315 5 5 2 126 315

2 1 1 17 317 201915 14 13 12 11

2 238875 15925 4550 6600 124740

 /   ,

2 3 ,    6( ),

,    ,

y h h h

f f

f f

f



   

         

    

 

   

         

     

 

1 703 277710 9 8

2271600 317520 44100

2486929 1941287 852338 1534729815316 64641129228797 6 5 3 2

6667920 2381400 1488375 2506943439000 15041660634000

2 2 1 17 31714 13 12 11 10

2 15925 2275 350 550 11340

   ,

f

  

    

    

  

    

     
20191 703 55549 8 7

227160 35280 11025

2486929 1941287 852338 4604189445948 64641129228796 5 4 2

952560 396900 297675 2506943439000 7520830317000
    ,

  

    

   

    

   (4.21b) 

 

Common Algorithm 

 

Follow our scheme (Fig. 1) we have two chamber with the initial pressures 
1

P  and 
2

P  with 
1 2

P P . 

Hence, calculation formulas (4.21) are valid for the both champers with may be different values 

 and 
1 2

h h h
. Moreover, for the right chamber, the porous wall is the injection boundary, and for the left 

chamber the porous wall is the suction boundary.  

Firstly we should find the pressure drop 1 2
P P P  

 and the boundary velocity at the porous wall 
k P

V
 


 , following (1.3). There should be used dimensional values 

1 2
,P P . 

The second step: using this value V  we can calculate the Reynolds number Re  and the function f  with 

all its derivatives under formulas (4.21). 

The third step is to find new P  from (3.5), 

 
1 2

2
( / )P h A 

,  
2Re( )A f ff f

  
    

 
 
Calculated using the expressions for  

 
2 2

0 1 2 0 1 2

2 2

0 1 2 0 1 2

Re Re ,    Re Re  ,

Re Re ,    Re Re

f f f f f f f f

f f f f f f f f

            

                
       (5.1) 
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Defined by the formulas (4.8), (4.12). and (4.18a). Note, that to find P  it is necessary to obtain 

0 1 2 0 1 2 0 1 2 0 1 2
, , , , , , , , , , ,  f f f f f f f f f f f f         , not only 

0 1 2 0 1 2
, , , , , f f f f f f    as it was necessary for u  and v , see (4.21) 

For injection the coefficients 0 1
,C C

 taken from the left hand side column of the table (4.19) to find the 

corresponding terms under the expressions, 

 

3 2 2

0 0 0 0

2 6 3 1577 37226 5 4 2

1 5 5 2 126 315

12 1577 37225 4 3

1 5 63 315

15774 3 2

1 63

2 1 1 1715 14 13 12

2 79625 15925 4550 6600

(2 3 ),  6( ),  6(2 1),  12;

,    

6 6 ,

12 24 18 ;

f f f f

f

f

f

f

    

    

   

  

   

           

     

    

   

    
101 10103 15067 471711 10 9 8

124740 15901200 317520 44100

2486929 2934797 3463321 3975666965189 388571617135497 6 5 3 2

6667920 2381400 1488375 3760415158500 15041660634000

2 2 114 13 1

2 15925 2275 350

   ,

f

   

    

  

   

    

   
17 101 161543 15067 94342 11 10 9 8 7

550 11340 1590120 35280 11025

2486929 3928307 2610983 3975666965189 388571617135496 5 4 2

952560 396900 297675 1253471719500 7520830317000

4 12 613 12

2 2275 175 1

    ,

f

    

    

 

     

    

   
17 101 161543 15067 943411 10 9 8 7 6

75 50 1134 176680 4410 1575

2486929 3928307 10443932 3975666965189 388571617135495 4 3

158760 79380 297675 626735859750 7520830317000

4 24 6612 11 1

2 175 175 175

    ,

f

     

   

  

     

    

  
17 101 161543 15067 188680 9 8 7 6 5

5 126 22085 630 525

2486929 3928307 10443932 39756669651894 3 2

31752 19845 99225 626735859750
    .

    

  

     

   

  (5.2a) 

 

For suction we can simultaneously use the expressions (4.8), (4.12), and (4.18b) with the coefficients 

0 1
,C C

 taken from the right hand side column of the table (4.19) to find the corresponding terms 

0 1 2 0 1 2 0 1 2 0 1 2
, , , , , , , , , , ,  f f f f f f f f f f f f          under the expressions, 

 

3 2 2

0 0 0 0

2 6 3 1577 37226 5 4 2

1 5 5 2 126 315

12 1577 37225 4 3

1 5 63 315

15774 3 2

1 63

2 1 1 17 31715 14 13 12

2 238875 15925 4550 6600 124

(2 3 ),  6( ),  6(2 1),  12,

,

6 6 ,

12 24 18 ;

f f f f

f

f

f

f

    

    

   

  

   

       

     

    

   

    
20191 703 277711 10 9 8

740 2271600 317520 44100

2486929 1941287 852338 1534729815316 64641129228797 6 5 3 2

6667920 2381400 1488375 2506943439000 15041660634000
   ,

   

    

   

    

  (5.2b) 

 
2 2 1 17 317 20191 703 555414 13 12 11 10 9 8 7

2 15925 2275 350 550 11340 227160 35280 11025

2486929 1941287 852338 4604189445948 64641129228796 5 4 2

952560 396900 297675 2506943439000 7520830317000
    ,

f        

    

         

    

 4 2 6 17 317 20191 703 555413 12 11 10 9 8 7 6

2 2275 175 175 50 1134 25240 4410 1575

2486929 1941287 3409352 9208378891896 64641129228795 4 3

158760 79380 297675 2506943439000 7520830317000

4 12

2 175

    ,

f

f

       

   



        

    


24 66 17 317 20191 703 1110811 10 9 8 7 6 5

175 175 5 126 3155 630 525

2486929 1941287 3409352 92083788918964 3 2

31752 19845 99225 2506943439000
    .

      

  

       

   

 (5.2b)  

 

Substituting 1   in (5.2a) – (5.2b) one obtains for injection, 
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0 0 0 0

2 6 3 1577 3722 12 1577 3722 3407 1577 1199

1 1 15 5 2 126 315 5 63 315 315 63 63

2 1 1 17 101 10103 15067 4717

2 79625 15925 4550 6600 124740 15901200 317520 4410

1,    0,    6,    12 ;

0,  ,  6 ;

f f f f

f f f

f

      

              

       
2486929 2934797

0 6667920 2381400

3463321 3975666965189 38857161713549

1488375 3760415158500 15041660634000

2 2 1 17 101 161543 15067 9434 2486929 39283

2 15925 2275 350 550 11340 1590120 35280 11025 952560

   0,

f

  

   

          
07 2610983

396900 297675

3975666965189 38857161713549

1253471719500 7520830317000

4 12 6 17 101 161543 15067 9434 2486929 3928307 10443932

2 2275 175 175 50 1134 176680 4410 1575 158760 79380 297675

   =  0,

     

f

 

 

            


3975666965189 38857161713549 4838552565389 42442704150389

626735859750 7520830317000 7520830317000 7520830317000

4 24 66 17 101 161543 15067 18868 2486929 3928307

2 175 175 175 5 126 22085 630 525 31752 19845

5 ,

f

  

          
10443932

99225

3975666965189 2443762716071 22499310228071
 

626735859750 2506943439000 2506943439000
     8 ,



  

   (5.3a) 

 

and for suction,  

 

0 0 0 0

2 6 3 1577 3722 12 1577 3722 3407 1577 1199

1 1 15 5 2 126 315 5 63 315 315 63 63

2 1 1 17 317 20191 703 2777 2

2 238875 15925 4550 6600 124740 2271600 317520 44100

1,    0,    6,    12 ;

0,  ,  6 ;

f f f f

f f f

f

     

              

        
486929 1941287

6667920 2381400

852338 1534729815316 6464112922879

1488375 2506943439000 15041660634000

2 2 1 17 317 20191 703 5554 2486929 1941287

2 15925 2275 350 550 11340 227160 35280 11025 952560 396900

   0 ,

f

 

   

          
852338

297675

4604189445948 6464112922879

2506943439000 7520830317000

4 2 6 17 317 20191 703 5554 2486929 1941287 3409352

2 2275 175 175 50 1134 25240 4410 1575 158760 79380 297675

9208378891896

250

   0 ,

     

f

 

  

            


6464112922879 2856702157061 17898362791061

6943439000 7520830317000 7520830317000 7520830317000

4 24 66 17 317 20191 703 11108 2486929 1941287 3409352

2 175 175 175 5 126 3155 630 525 31752 19845 99225

9

2 ,

     

f

  

           


208378891896 174644137273 20230191649273

2506943439000 835647813000 835647813000
24 . 

   (5.3b) 

 

As a result we have for injection with Reynolds number 
1

Re /hV   , 

 
2 2

3407 42442704150389 1199 224993102280712 2

315 7520830317000 63 2506943439000

1 0 Re 0 Re 1,    0 0 Re 0 Re 0,

6 Re Re ,    12 Re Re ,

f f

f f

           

        
    (5.4a) 

 

and for suction, with the Reynolds number 
2

Re /h V 
 

 
2 2

3407 17898362791061 1199 202301916492732 2

315 7520830317000 63 835647813000

1 0 Re 0 Re 1,    0 0 Re 0 Re 0,

6 Re Re ,    12 Re Re .

f f

f f

             

      
     (5.4b) 

 

Finally, we obtained formulas for injection
P

, for injection, with the Reynolds number 1

1
Re

h V


 : 
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2

1

3407 42442704150389 1199 224993102280712 2

1 1 1 1 1315 7520830317000 63 2506943439000

1199 3407 224993102280712 2

1 1 1 163 315 2506943439000

82

Re ( )

  Re (6 Re Re ) (12 Re Re )

  12 6 Re Re Re Re

  12

A f ff f
  
     

      

     

 

 injection

1 1982166781271 821 496140921222712 2

1 1 1 163 2506943439000 63 2506943439000

1 821 496140921222712 2

1 1 12 63 2506943439000

Re 19 Re 12 Re Re ,

( / ) 12 Re Re ,P x h

       

     
      (5.5a) 

 

and suction
P

, for suction, with the Reynolds number 2

2
Re

h V


 : 

 

suction

2

2

1199 3407 202301916492732 2

2 2 2 263 315 835647813000

1577 20778825673 1577 292684522806732 2

2 2 2 263 835647813000 63 835647813000

1

2

Re ( )

  12 6 Re Re Re Re

  12 Re 35 Re 12 Re Re ,

( /

A f ff f

P x h

  
     

      

       

   1577 292684522806732 2

2 2 263 835647813000
) 12 Re Re .  

      (5.5b) 

 

The last two expressions define the new pressures at the both chambers 

 

 injection suction

(1) (0) (1) (0)

1 1 2 2
,    P P P P P P     

,        (5.6) 

 

and the new pressure drop 
(1) (1) (1)

1 2
P P P    and the new velocity 

(1)V ,  

 

   

 
injection suction

injection suction

injection sucti

(0) (0) (0)

1 2

(1) (0) (0)

1 2

1(0) 2 2

1 1 22

821 49614092122271 2

1 163 2506943439000

,

                              ( / ) ( / ) ,

12 Re Re ,  

P P P

P P P P P

P x h P h h P

P P

  

       

     

      

 

on

dimensional

injection suction

1577 29268452280673 2

2 263 835647813000

(1) (1) (0) (1)

1

1(0) (0) 2 2

1 1 1 22

12 Re Re ,

( / )( / ) ( / ) ( / )( / )

    ( / ) ( / ) ( / ) .

V k P k V h P

k h V P x h P h h P

    



   

     

       
  

   (5.7) 

 

 In the partial case, when the both channels have the same width, i.e. if 
1 2

h h h   then,  

 
 

1 84 2161606561(1) (0) 2 2

2 7 141891750

1 84 2161606561(1) (0) (0) 2 2

2 7 141891750

( / ) Re Re ,

( / ) ( / ) Re Re .

P P x h

V k h V P x h

    

     
 

      (5.7a) 

 

In Section 5, all pressures are dimensionless, due to they were namely calculated this way.  The only 

exception is the value 
dimensional

(1)P  used to calculate dimensional value 
(1)V ; this  pressure drop is 

designated as dimensional. 

 

It can be watched that the value A  and, consequently, P  and V , at each step, depend only on Reynolds 

number Re  because all terms 
0 1 2 0 1 2 0 1 2 0 1 2
,  , ,  , , , ,  ,  ,  ,  ,   f f f f f f f f f f f f          calculated using (5.3a) – (5.3b) are 

constants. Note, that the velocity is defined by real value of the pressure drop P , and consequently, by 
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the both dimensional pressures 1 2
,P P

 to be found after multiplying the corresponding values above (5.6) 

by the multipliers 
1

/V h  and 
2

/V h , follow to the inverse dimensionless transformation (1.4a), with 

the choice 
1 2
,h h   in accordance with the considered chamber. 

At the forth step we should compare our initial value of velocity 
1 2

( / )( ) /V k P P    calculated for 

initial pressure drop with the velocity calculated for the new pressure drop found at the previous step. If 

min(1) (0) (1) (0)/ ( , )V V V V   , where   is accuracy sufficient for the study, then the calculation by this 

algorithm can be considered complete. If not, then we need to return to the 2nd step with the new value V

there it is necessary to use dimensional pressures 
and 

1 2
 P P

 using the transform (1.4a).  
 

Note, that for the forth step (d) it is more convenient to use dimensionless values of pressures 
and 

1 2
 P P

 

(see Eq. (1.4a))1/ instead of dimensional velocity values  and  (0) (1)V V  due to the ratio 

 

 min(1) (0) (1) (0)/ ,V V V V             (5.8) 

 

is a dimensionless value and so the inequality (5.8) may be represented as, 

 

   
    min min

( 0)
1 1

(1)

( 0)
1 1

(1)

(1) (1) (0) (0)
(1) (0)

1 2 1 2
2 2

(1) (0)
(1) (1) (0) (0)

1 2 1 2
2 2

( , ) ,

h hV

h hV

h hV

h hV

P P P PV V

V V P P P P



   
 

  

      (5.9) 

 

At the final fifth step, after satisfying inequality (5.9), the velocity field ( , )u vu  for the both chambers 

can be calculated using expressions (4.21a,b). The general block-scheme of the calculation algorithm is 

presented in the Appendix. 

 

Common Algorithm for two components flow 
 

Let us consider the case when the water vapor moves in the air co-flow when the vapor is a small 

component compared to air flow, i.e. when 
A ir

m m , where  

 

/ ( ),  1
vapor vapor Air vapor Air vapor

m M M M m m   
,        (6.1) 

 

and 
vapor

M , 
vapor

M  are the mass flow of the vapor and air, correspondingly. In any case the air flow is the 

main one and the steam moves due to the Stokes forces.  

 
1/ Recall that at the end of Section 1 we agreed that for simplicity, we omitted the asterisks (*) at the superscripts. 

Naturally, in the case 
A ir

m m  the horizontal component of the vapor phase velocity vapor
v

coincides 

with the velocity of air flow A ir
v

. Since both walls are impermeable for the air component, the air flow is 

a Poiseuille flow, with the parabolic profile of the velocity A ir
v

,  

21
( )

2
A ir

P
v hy y

x


 


.           (6.1) 

     It can be seen that the velocity A ir
v

 satisfy to the boundary conditions, 
(0) ( ) 0

Air Air
v v h 

, and the 

maximal velocity value  
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max 21

8
A ir

P
v h

x


 

              (6.2) 

is reached in the center of the channel. Namely we should use the value 

2

2 2

1
( ) ( )

2

1
 ( ) ( ) ( )

2

vapor A ir

vapor A ir

P
v m V f m hy y

x

P
m V f m f ff f x hy y

L
  








     



 
           

        (6.3) 

 

instead of the value * ( )v v V V f      presented in (4.21). The signs, “” and “ “, correspond to the 

1st (injection) and the 2nd (suction) channels, accordingly. The function ( )f   and its derivatives may be 

found from (4.3) as follows,  

 
( ) ( ) ( ) ( ) 2

0 1 2
( ) Re Ren n n nf f f f      ,          (6.4) 

  

Where, n  is the order of the derivative order, and the coefficients 
( )  ( 0,1,2)n

k
f k 

 are presented in (5.2a) 

and (5.2b) for the both channels. Formula (6.3) is acceptable for common the case, i.e.  when the vapor 

mass component vapor
m

 is not sufficiently low compared to the air co-flow mass component.  

For the case when the vapor is a small component compared to air flow, i.e. when 
A ir

m m , we may 

neglect the first term, ( )
vapor

m V f   , in (6.2) and the pressure drop 

 

2( )
P

x f ff f
dx   


      
 

          (6.5) 

 

in the second term due to the flow through a porous wall may be also neglected. Here, again, signs, “” 

and “ “, correspond to the 1st (injection) and the 2nd (suction) channels, accordingly. As a result, one 

may use the simplified formula, 

 

21
( )

2

P
v x hy y

L


 

.           (6.5) 

 

The author is grateful to V. Sherbaum for the proposed problem. 
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     This procedure should be provided for all discrete length values [0, ]x L , where L  is the length of 

the chambers (see Fig. 1). 


