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ABSTRACT 
 

This study introduces an uncertain multi-objective, multi-commodity, multi-period, and multi-vehicle 
mixed-integer programming model with social equity designed for the critical response phase of 
humanitarian operations. The framework strategically addresses the complexities of disaster relief by 
integrating five key echelons: affected regions, distribution centers, hospitals, temporary 
accommodation facilities, and temporary care centers. The model is driven by four primary objectives: 
the minimization of overall costs associated with facility location, resource allocation, social equity and 
crucially, the reduction of relief supply shortages. Uncertainty inherent in disaster scenarios is robustly 
managed through a probabilistic scenario-based approach. Significant strategic decisions facilitated by 
the model encompass the optimal siting of temporary care and accommodation centers, the efficient 
allocation of affected populations to designated centers and hospitals, and the effective distribution of 
supplies from major hubs to temporary shelters. Furthermore, the model determines optimal flows for 
injured individuals and commodities between facilities, specifies the required number of vehicles for 
inter-facility transport, and manages both shortage and inventory levels at all centers. A comprehensive 
set of constraints ensures practical applicability, covering aspects such as demand fulfillment, relief 
commodity flow, facility capacities, transportation logistics for both people and goods, and the 
utilization of backup centers across multiple planning periods. 

The developed model’s efficacy was demonstrated through its application to a real-world case 
study: the city of Warri and its environs in Nigeria, a region significantly impacted by floods exacerbated 
by global warming. To solve this complex problem, three distinct methods were employed: the epsilon-
constraint method, the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II), and a modified multi-
objective particle swarm optimization (MMOPSO). Perfor- mance analysis, utilizing various multi-
objective evaluation metrics, confirmed the superior performance of MMOPSO. A significant 
innovation of this model is its inherent integration of social equity principles, ensuring that the allocation 
of resources and services prioritizes the most vulnerable populations within the affected area. A 
preferred solution, selected from the MMOPSO-generated non-dominated set based on these equity 
considerations and expert judgment, was thoroughly analyzed to exemplify the model’s practical 
implications for resilient and equitable disaster response. 
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INTRODUCTION 

The accelerating impacts of global warming have significantly heightened the frequency, intensity, and 

complexity of natural disasters, including floods, droughts, heatwaves, and hurricanes. These events pose 

a critical threat to public welfare, particularly in vulnerable and resource-scarce regions. As climate change 

continues to disrupt environmental stability, the ability of emergency response systems to adapt and 

respond efficiently is increasingly constrained by lim- ited resources, uncertain demand, damaged 

infrastructure, and competing socio-economic priorities. The increasing impact of global warming on the 

frequency, magnitude, and unpredictability of disasters has been well-documented. According to the IPCC 

Sixth Assessment Report (2023), global mean surface temperatures are projected to rise by 1.5 C to 2 C 

within the next few decades, amplifying the risk of floods, droughts, wildfires, and hurricanes. Conse- 

quently, emergency response systems are experiencing heightened stress, especially in low- and middle-

income countries. Traditional disaster response models primarily focus on logistics optimization, often 

assuming availability of sufficient resources for effective implementation. For example, Rawls and 

Turnquist (2016) proposed stochastic optimization approaches to pre-position emergency supplies, 

improving delivery speed while accounting for uncertainty in demand. However, these models typically 

optimize single objectives, often neglecting distributional fairness or equity outcomes, especially for 

socially vulnerable populations (Kellermann et al., 2018). Rahmani and Ghasemi (2022) developed an 

integrated multi-objective location-inventory-routing problem (LIRP) tailored for humanitarian relief 

supply chains under the increasing threat of global warming-induced disasters. The model simultaneously 

addresses decisions regard- ing the location of distribution centers, inventory pre-positioning, and vehicle 

routing for post-disaster relief delivery. Uniquely, it incorporates the impacts of global warming, such as 

increased disaster frequency and severity, into both demand uncertainty and transportation network 

vulnerability to balances cost, responsiveness, and fairness in aid distribution and successfully improves 

logistical preparedness and responsiveness in humanitarian supply chains facing the growing risks posed 

by climate change. Results demonstrate that considering climate-induced uncertainties in pre- positioning 

strategies leads to more resilient and equitable relief operations. Trade-off analysis enables decision-makers 

to balance costs, delivery time, and equity according to specific disaster contexts and policy priorities. 

Emerging research emphasizes the integration of climate adaptation planning into emergency logistics, yet 

operational models that explicitly include climate-driven risk factors remain limited (Djalante et al., 2020). 

This highlights a crucial gap: the need for optimization models that simultaneously handle operational 

efficiency, social vulnerability, and climate- induced uncertainty. Designing resilient emergency response 

and welfare networks under these conditions necessitates advanced decision-support systems that can 

handle multiple, often conflicting objectives, such as minimizing response time, reducing operational costs, 

maximizing coverage, and ensuring equity among affected populations. These systems must also be 

capable of operating under uncertainty, incorporating environmental, logistical, and social risk factors into 

planning and execution. To address these challenges, mathematical optimization models have emerged as 

powerful tools in disaster management, enabling decision-makers to allocate scarce resources strategically 

and equitably. The formulation of a Resource-Constrained Multi-objective Optimization Model (RC-

MOM) for climate-resilient emergency response requires interdisciplinary insights from three major 

research domains: climate-induced disaster response sys- tems, optimization under resource constraints, 

and welfare network design. This section synthesizes relevant literature to situate the proposed work in 

relation to existing research. 

Resource-constrained optimization is central to operations research and disaster logistics. Classical 

models include the capacitated vehicle routing problem (CVRP), knapsack problem, and facility location 

problems under budget or supply limitations (Farahani et al., 2009). 
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Several works have explored multi-commodity flow models where multiple types of relief supplies are 

transported across disrupted networks (Zheng et al., 2019). Multi-objective optimization models, in 

particular, offer a flexible framework for balancing the competing goals inherent in emergency and 

welfare logistics. However, most existing models either neglect resource constraints or fail to integrate 

fairness and climate resilience systematically. This paper proposes a novel resource-constrained multi-

objective optimization model that explicitly incorporates equity, uncertainty, and climate resilience into 

the design of emergency response and welfare networks. The proposed model aims to bridge the 

methodological gap between operational efficiency and social justice in humanitarian logistics under 

global warming conditions. 

LITERATURE REVIEW 

The use of optimization techniques in disaster and humanitarian logistics has evolved significantly over the 

past two decades. Early models primarily focused on cost minimization and shortest-path routing without 

adequately account- ing for resource limitations or social equity (Tzeng et al., 2007; Barbarosoglu and 

Arda, 2004). However, with the increasing complexity of disasters exacerbated by climate change, recent 

research has shifted towards more sophis- ticated multi-objective and resource-aware models. 

Mathematical optimization has played a pivotal role in shaping disaster response strategies, particularly 

through models that guide resource allocation, facility location, and logistics planning. Traditional 

approaches often prioritized cost minimization and logistical efficiency (Tzeng et al., 2007), but growing 

recognition of climate risks and social inequities has shifted attention toward more complex, multi-

objective frameworks. Ahmadi et al. (2015) developed a humanitarian logistics model that considers 

network failures and re- source constraints. Their approach integrates uncertainty using scenario-based 

stochastic programming, but equity was not explicitly addressed. Similarly, Rawls and Turnquist (2010) 

proposed a two-stage stochastic programming model for emergency resource allocation that emphasizes 

risk minimization. While effective under uncertain demand, their model did not incorporate fairness 

measures or climate-related disruptions. Recent studies have emphasized the need for climate-resilient 

humanitarian networks. For instance, Ransikarbum and Mason (2016) introduced a goal programming 

model balancing cost, response time, and fairness. Their work marks a notable effort in includ- ing equity 

considerations, though it does not fully address dynamic climate-related variables. Likewise, Mohammadi 

et al. (2022) proposed a robust optimization framework for resource allocation under uncertainty, 

accounting for social vulnerability and supply chain resilience. However, their model primarily operates 

within static conditions and lacks adaptability to evolving climate risks. Yazdani et al. (2021) proposed a 

dynamic network reconfiguration model in climate-induced flood scenarios. Their work reflects an 

emerging trend of integrating environmental modeling into logistics optimization. However, their focus 

was primarily on network topology and did not explore social or equity implications. Wang et al. (2021) 

explored the use of renewable energy-powered UAVs in emergency logistics. Their work highlights 

sustainable logistics innovations and suggests adaptability under resource constraints, though integration 

into equity-driven multi-objective models remains limited. Torabi et al. (2018) designed a resilient supply 

chain model using a bi-objective robust optimization approach that accounted for cost and service level. 

The model considers facility disruption and supply uncertainty but lacks attention to social vulnerability or 

fairness in outcomes. A growing body of literature also incorporates UAVs (Unmanned Aerial Vehicles) 

and renewable energy logistics in disaster response models to enhance flexibility and reduce environmental 

impact (Torabi et al., 2018; Wang et al., 2021). These innovations suggest that resilience and sustainability 

must be integrated into optimization models for global warming contexts. However, few existing models 

synthesize these dimensions into a unified, multi-objective framework under strict resource constraints. 

Moreover, the concept of equity and fairness in optimization has gained traction, with metrics such as the 

Gini coefficient and max-min fairness being employed to reduce disparity in resource allocation (Yuan et 

al., 2023). Yet, incorporating such metrics into climate-adaptive emergency logistics remains un- 

derdeveloped. Ghasemi and Khalilzadeh (2019) applied chance-constrained programming to humanitarian 
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logistics, capturing the probabilistic nature of demand and resource availability. Their model addresses 

stochasticity but does not include long-term resilience or social objectives. 

 

Liu et al. (2023) employed a hybrid solution technique that combines evolutionary search with fairness 

metrics. However, it requires extensive calibration and lacks real-time adaptability. Zhu et al. (2020) used 

a max-min fairness model to allocate emergency shelters, ensuring that the worst-off individuals received 

priority. This aligns with social justice goals but may not be optimal from a cost perspective. Akbari and 

Salman (2017), addresses emergency resource allocation by formulating two multi-objective robust 

optimization framework incorporating uncertainty in demand using scenario-based approaches. The model 

focuses on simultaneously minimizing operational costs and the risks associated with the shortage of 

critical resources. It emphasizes balancing efficiency and robustness to ensure that emergency responses 

remain effective despite unpredictable disaster conditions without integrating dynamic uncertainty and 

real-time updates to refine allocation strategies. They used ϵ-constraint and weighted sum methods to 

generate Pareto-optimal solutions, evaluated on simulated disaster scenarios. Wu and Cui (2021), 

developed a bi-objective mixed-integer programming (MIP) model integrating flood hazard scenarios 

derived from climate change projections for evacuation planning in flood-prone regions, explicitly 

incorporating the increasing risks posed by global warming by minimizing both total evacuation time and 

inequality in evacuation routes among affected populations of the flood- prone urban areas using simulated 

global warming-augmented scenarios. By considering the intensified flood risks associated with climate 

change, the study emphasizes the need for adaptive evacuation strategies that ensure both efficiency and 

fairness without Incorporate real-time flood forecasting data and behavioral factors such as evacuation 

hesitancy. Li et al. (2022), introduces an equity-oriented optimization model for post-disaster resource 

allocation, explicitly addressing the role of social vulnerability in humanitarian logistics by incorporating 

social vulnerability data into optimization models for more equitable allocation outcomes, albeit with 

marginal increases in overall costs. The model integrates social vulnerability indices into resource 

allocation decisions to promote fairness alongside operational efficiency. Tofighi et al. (2016) proposed a 

multi-objective optimization model for designing humanitarian logistics networks under conditions of 

resource scarcity and the need for equitable distribution of aid by incorporates fairness considerations 

explicitly into the facility location and allocation decisions in the aftermath of disasters. The aim is to 

improve social equity by minimizing the disparity in aid delivery while considering cost-effectiveness. 

Uncertainty in demand is also addressed through robust optimization techniques, providing solutions that 

are resilient under varying disaster scenarios. This research fails to incorporate dynamic and time-

dependent aspects of disaster relief logistics, including evolving demand patterns and multi-period decision 

frameworks. Additionally, integrating behavioral aspects of equity perception among affected populations 

and decision-makers could further enhance the applicability of such models in real-world humanitarian 

operations. Chen et al. (2022), proposed a model that effectively reduces inequality in resource distribution 

among disaster shelters without significantly increasing overall operational costs. By explicitly integrating 

equity into the optimization framework and ensures more balanced and socially just disaster response 

outcomes without considering multi-period and dynamic resource flows, reflecting the evolving nature of 

disaster impacts. Additionally, integrating community participation mechanisms and feedback loops in the 

allocation process can enhance legitimacy and acceptance of the resource distribution plans. Investigating 

the interplay between equity and other objectives like environmental impact. Jabbarzadeh et al. (2016), 

formulated a multi-objective optimization model for designing resilient and sustainable humanitarian 

supply chains, explicitly considering resource limitations. The model addresses challenges in disaster relief 

operations, such as budget constraints, transport capacity, and storage capacity to reflect real operational 

limitations in disaster response. Limited funding, constrained logistics capacities, and the necessity for 

environmentally sustainable operations. It integrates resilience strategies (e.g., multiple sourcing, 

redundant facilities) with sustainability considerations to improve operational performance. The trade-offs 

between economic efficiency, environmental impact, and operational resilience are systematically explored 

without focusing on dynamic models that adapt to real-time disaster developments, incorporate multi-

period planning, and integrate behavioral factors such as stakeholder risk preferences. The inclusion of 
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social sustainability objectives, such as equity in beneficiary service levels or community engagement, is 

also recommended to complement environmental and resilience goals. Daneshvar and Khadem (2022), 

develops a robust multi-period optimization model for designing humanitarian relief supply networks under 

the uncertainties associated with global warming. Recognizing that climate change leads to increased 

variability in disaster frequency, severity, and logistics disruptions, the model addresses the need for 

resilient supply chains that can operate effectively over multiple planning periods. The model 

simultaneously considers uncertainties in demand fluctuations, transportation disruptions, and resource 

availability, offering a holistic approach to climate-resilient disaster logistics and substantially improves 

supply chain resilience in the face of climate- induced uncertainties. By planning for worst-case scenarios, 

the model guarantees continuity of relief operations even under severe disruptions. Although ensuring 

robustness slightly increases operational costs, the security and stability it offers make it highly suitable for 

humanitarian agencies operating in global warming-affected regions. Moradi and Manzouri (2024), 

proposes a resilient optimization model for designing food distribution networks during climate- induced 

crises. Recognizing that global warming exacerbates risks such as floods, droughts, and storms, the model 

seeks to ensure continuous, equitable, and efficient food supply during disruptions. The study integrates 

concepts of resilience and fairness in supply chains to provide actionable guidance for policymakers and 

humanitarian organizations working to maintain food security during complex emergencies. The findings 

show that while building resilience in food distribution incurs additional upfront costs, it significantly 

reduces the risk of severe supply shortages during major climate disruptions. Moreover, incorporating 

equity objectives prevents disproportionate suffering among marginalized communities. The integrated 

approach helps balance operational efficiency, social fairness, and long-term system sustainability. 

Mohammed et al. (2019), proposes an evolutionary algorithm-based framework for optimizing emergency 

resource allocation in disaster response scenarios. Given the uncertainty and time-critical nature of 

disasters, traditional optimization techniques often fall short in generating feasible solutions within tight 

deadlines. The authors introduce an evolutionary computation-based approach to rapidly search for near-

optimal resource allocation strategies while addressing multiple, conflicting objectives such as cost 

minimization, equity, and response effectiveness. Their results show that evolutionary algorithms can 

generate high-quality, near-optimal solutions in shorter computational times compared to exact methods. 

Particularly under high uncertainty and tight deadlines, evolutionary approaches provided robust and 

adaptable resource allocation plans. While classical methods yield optimal solutions, their computational 

expense often renders them impractical in real-time disaster situations without integrating evolutionary 

optimization techniques into decision-support systems for disaster relief agencies. Further work should 

explore hybrid metaheuristic algorithms combining evolutionary algorithms with local search heuristics to 

improve convergence speed and solution quality.  

  MATHEMATICAL MODEL 

The research introduces a multi-objective, multi-commodity, multi-period, multi-vehicle mixed-integer 
programming model designed to address challenges related to global warming impacts. The main 
assumptions underpinning this model are outlined below: 

The model is developed for a planning horizon encompassing multiple time periods, specifically 
focusing on the aftermath of events exacerbated by global warming. 

Five echelons are incorporated into the model: impacted regions, distribution hubs, healthcare facilities, 
tempo- rary shelters, and emergency care centers. 

 

The Four primary objective functions considered are the cost of humanitarian logistics operations and 
the extent of relief supply shortages. Crucially, these objectives are pursued with social equity as a 
guiding principle, ensuring that aid distribution prioritizes fairness and addresses the needs of vulnerable 
populations. 
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Model uncertainties, including the probability of extreme weather events (intensified by global warming), 
the likelihood of temporary shelter failure, and the probability of emergency care center failure, are 
addressed using a probabilistic scenario-based approach. 

Multiple scenarios, each with an associated probability of occurrence, are developed based on the severity 
of global warming-induced events. 

This model is applied to make strategic evacuation and relief efforts in the post-disaster phase following 
global warming-related incidents. 

 

The number and locations of healthcare facilities and impacted regions are predetermined. 

The capacities of all facilities are known. 

The distances between impacted regions, distribution hubs, healthcare facilities, temporary shelters, and 
emer- gency care centers are known. 

The load-carrying capacity of each vehicle type is known. 

Provisions for backup temporary shelters and emergency care centers are included. 

Multiple temporary shelters are considered, categorized as either vulnerable or resilient to global warming 
im- pacts. 

Multiple emergency care centers are considered, categorized as either vulnerable or resilient to global 
warming impacts. 

Several healthcare facilities with known capacities are available throughout the planning periods. 

Multiple distribution hubs can be established to provide commodities. 

All distances between facilities are fixed and known for the duration of the planning periods. 

Demand for resources varies based on each specific scenario. 

The indices, parameters, and decision variables employed in the model are presented as follows: 

Sets and Indices 

Sets: 

FD: Collection of temporary care facilities vulnerable to damage from global warming impacts, FD = {1, 

. . . , FD} 
 

FR: Collection of temporary care facilities resilient to global warming impacts, FR = {1, . . . , FR} 

AD: Collection of temporary accommodation centers vulnerable to damage from global warming 
impacts, AD = {1, . . . , AD} 

AR: Collection of temporary accommodation centers resistant to global warming impacts, AR = {1, 

. . . , AR} 

Indices: 

 k: Index for potential sites of temporary accommodation centers, k ∈ {1, . . . , K}, where K = AD ∪ 
AR 

l: Index for potential sites of temporary care facilities, l ∈ {1, . . . , L}, where L = FD ∪ FR 

d: Index for regions impacted by global warming events, d ∈ {1, . . . , D} 

h: Index for healthcare institutions, h ∈ {1, . . . , H} 
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e: Index for distribution hubs, e ∈ {1, . . . , E} 

v: Index for transportation units, v ∈ {1, . . . , V } 

c: Index for essential commodities (provisions), c ∈ {1, . . . , C} 

s: Index for distinct global warming impact scenarios, s ∈ {1, . . . , S} 

t: Index for sequential time periods, t ∈ {1, . . . , T } 

r: Index for resource allocation tiers (0 for primary facilities, 1 to R for backup facilities), r ∈ {0, 1, 

. . . , R} 

 

Parameters of the Model 

Costs:  

Ccare: Cost associated with establishing a temporary care facility at location l at allocation tier r 
under scenario s. 

Caccom: Cost associated with establishing a temporary accommodation center at location k at 
allocation tier r under scenario s. 

Cveh: Operational cost per unit distance for vehicle v under scenario s. 

Πcare: Penalty incurred for casualties at temporary care facility l during its failure due to global 
warming impacts in scenario s. 

Πaccom: Penalty incurred for casualties at temporary accommodation center k during its failure due 
to global warming impacts in scenario s. 

Demands: 

Doutpatient: Number of individuals requiring outpatient services in affected region d under scenario s. 

Devac: Number of individuals needing evacuation from affected region d under scenario s. 

Dcritical: Number of critically injured individuals requiring treatment in affected region d under scenario s 

Qcommodity: Demand for commodity cat temporary accommodation center k during time period t under 

scenario s. 

Capacities: 

Mpatient:  Capacity of vehicle type v for transporting injured individuals (both critically and non-

critically injured). 

Mevacuee: Capacity of vehicle type v for transporting individuals displaced by global warming events. 

Mgoods: Capacity of vehicle type v for transporting various commodities. 

Ndist: Capacity of distribution hub e for commodity type c under scenario s at time t. 

N shelter: Capacity of temporary accommodation center k for commodity type c under scenario s at time 

t. 

Nhospital: Patient admission capacity of temporary care facility l across all allocation tiers r in scenario s. 

Nevacuee Capacity of temporary accommodation center k for evacuees under scenario s at allocation tier r. 

Distances: 

Daffected-care: Distance between affected region d and temporary care facility l at allocation tier r. 
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dlsr 

dksr 

k 

  

  

Daffected-accom: Distance between affected region d and temporary accommodation center k at allocation 

tier r. 

Ddist-accom: Distance between distribution hub e and temporary accommodation center k at allocation 

tier r. 

D
affected-hospital

: Distance between affected region d and hospital h. 

Rcare: Coverage radius for temporary care facility l at allocation tier r. 

Raccom: Coverage radius for temporary accommodation center k at allocation tier r. 

Other Parameters: 

 Ξequity: A disparity penalty coefficient for assigning affected area d to care facility l at allocation tier r 
in scenario s. 

 Ξequity: Disparity penalty for assigning affected area d to accommodation center k at allocation tier r in 
scenarios. 

Pcare fail: Probability of failure for temporary care facility l ∈ FD due to global warming impacts. 

 Paccom fail: Probability of failure for temporary accommodation center k ∈ AD due to global 

warming impacts. 

M: A sufficiently large positive constant. 

Ps: Probability of occurrence for scenario s. 

βct: Consumption coefficient for commodity c in time period t. 

γk: Minimum required coverage level for commodities at temporary accommodation center k. 

ϑc: Volume (in m3) of each unit of commodity c. 

ψc: Priority level for fulfilling the demand of commodity c. 

Ωds is the vulnerability index of affected area d in scenario s. 

Decision Variables 

Location: 
χlsr: 1, if a temporary care facility is established at location l at allocation tier r in scenario s 

0, otherwise 

Ksr 
:     

1, if a temporary accommodation center is established at location k at allocation tier r in scenario s 

0, otherwise 

Allocation: 

Ζdlsr  
: 

1, if affected region d is assigned to temporary care facility l at allocation tier r in scenario s 

0, otherwise 

′ 

Dksr       
: 

1, if affected region d is assigned to temporary accommodation center k at allocation tier r in scenario s 

0, otherwise 

Flow Between Facilities: 

Λdls: Number of non-critically injured individuals transferred from affected region d to temporary care 
facility lin scenario s. 

  ′ 

Dks : Number of individuals displaced by global warming impacts transferred from affected region d to 
temporary accommodation center k in scenario s. 
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dlsr 

Dhs : Number of critically injured individuals transferred from affected region d to hospital h in scenario s. 

Γekcts: : Quantity of commodity type c transferred at time t from distribution hub e to temporary 
accommodation center k in scenario s. 

 

Number of Vehicles: 

Υvdls: Number of vehicle type v traveling from affected region d to temporary care facility l in scenario s. 
 

  

 Vdks  Number of vehicle type v traveling from affected region d to temporary accommodation 
center k in scenario s 

Y ′′vdhs  : Number of vehicle type v traveling from affected region d to hospital h in scenario s. 

Υvekst: Number of vehicle type v traveling at time t from distribution hub e to temporary 
accommodation centerk in scenario s. 
 

Other Variables: 

ωkctsr: Amount of shortage for commodity cat temporary accommodation center k at allocation tier 
r in scenario s during period t. 
 

 τkcts: Amount of commodity c stored at temporary accommodation center k in period t in scenario s  

Building upon the established notation, the comprehensive mathematical model, defined by 

equations (1) — (29), is now presented. The objective function aims to minimize the total cost of 

humanitarian logistics and facility operations in the context of global warming impacts, by 

considering the sum of several cost components, along with minimizing the total shortage of critical 

supplies. It’s composed of several parts, such that: 

 

To bolster the realism of the model, within the critical context of global warming impacts, we 
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dlsr 

dksr 

introduce a component that explicitly accounts for social equity. This addition discourages 
solutions that inadvertently leave vulnerable populations underserved, reflecting a more 
holistic and ethical approach to humanitarian logistics. We define a penalty term, Ξequity, 
which quantifies the cost incurred when vulnerable groups in affected area d are inadequately 
served by temporary care facility l at allocation tier r in scenario s. This penalty should be a 
function of the vulnerability index of the affected area, Ωds, and could also consider factors 
like the distance to the facility or its capacity to serve the specific needs of vulnerable 
individuals. A mathematical expression for this equity-based penalty is: 

  

 

 

Here, Ceq represents a predefined societal cost or penalty multiplier associated with inequitable 

service provision. This value would need to be determined based on ethical and policy 

considerations. Ωds is the vulnerability index of affected area d in scenario s. A higher value 

indicates greater vulnerability, leading to a larger penalty if service is inadequate. This index could 

integrate various socio-economic, demographic, and health factors. affected-care is the distance between 

affected area d and temporary care facility l in scenario s. A greater distance could imply increased 

difficulty in access for vulnerable groups. Rcare is the maximum coverage distance for temporary 

care facility l at   allocation tier r. 

across all allocation tiers r in scenario s. Including the inverse of capacity ensures a higher penalty 
if a facility with limited capacity is disproportionately assigned vulnerable populations. Similarly, 
the concept of Ξequity is directly applicable to temporary accommodation centers as well.  We can 
define a similar penalty term, Ξequity, to ensure
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dkr 

Ksr   

  represents its capacity for housing evacuees. By including both Ξdlsr and Ξdksr in the 
objective the objective  

equitable service for vulnerable groups at temporary accommodation centers. Its mathematical 
expression would follow an analogous structure: 

 

 

 

 

Here, Daffected-accom is the distance to temporary accommodation center k, Raccom is its coverage distance, and 

ΣR  

Nevacuee 

function, the model is encouraged to develop solutions that are not only cost-effective but also socially 
responsible, prioritizing the needs of the most vulnerable populations in global warming-induced 
disasters. Now, consolidating the various function to form the complete minimization problem, we 
say;    

min G1 + G2 + G3 + G4    (5) 

 

 

 

 

 

 

 

r=0 
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The objective function as expressed in Equation (5), represented as the sum of G1, G2, G3, and G4, 

which aims to minimize the total costs associated with humanitarian logistics operations in the 

aftermath of global warming-induced disasters. This comprehensive minimization problem 

systematically addresses various critical cost components to ensure an efficient and effective disaster 

response. The first component of this objective, G1 as shown in Equation (1), specifically targets the 

cost attributed to casualties at temporary care facilities stemming from global warming impacts.  This 

segment quantifies the expected penalty for the loss of individuals requiring outpatient services. It 

meticulously considers the probability of failure for initial temporary care centers, represented by  care 

fail for facilities in  D, and contrasts this with the successful operation (or replacement by backup 

facilities) of resilient centers, indicated by (1 − Pcare fail) for facilities in FR. The allocation variable 

ζdlrs signifies the assignment of an affected area to a particular temporary care facility at a given 

allocation level. Similarly, G2 in Equation (2) addresses the cost incurred due to casualties at temporary 

accommodation centers, also as a consequence of global warming impacts. This part mirrors the 

structure of G1, calculating the expected penalty for the loss of evacuees. It accounts for the failure 

probability of initial temporary accommodation centers, Paccom fail for facilities in AD, and the 

effective functioning of resilient or backup centers, (1 − Paccom fail) for facilities in AR. The allocation 

variable ζ′ denotes the assignment of an affected area to a temporary accommodation center. 

The third component, G3 in Equation (3), consolidates all transportation-related costs across various 
routes and scenarios. This extensive section covers four distinct aspects of logistical movement. It 
includes the costs associated with transporting individuals from affected areas to temporary 
accommodation centers, from affected areas to temporary care facilities, and from affected areas to 
hospitals. Furthermore, it incorporates the costs of transporting commodities from distribution hubs to 
temporary accommodation centers. Each part is calculated based on the distance between facilities and 
the number of vehicles deployed, reflecting the operational expenses of the entire relief distribution 
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network. Finally, G4 in Equation (4) encompasses two crucial cost categories. The first part represents 
the expenditures for establishing both temporary care and temporary accommodation facilities. This 
includes the investment required to set up these critical infrastructure points, considering various 
allocation levels and scenarios. The second part of G4 is the total weighted shortage cost of commodities. 
This directly addresses the second objective function of the model, aiming to minimize the unmet demand 
for essential supplies. The inclusion of the priority coefficient ψc within this term ensures that 
commodities deemed more urgent or critical are prioritized, thereby mitigating the impact of shortages 
on the most vital relief supplies. In essence, the objective function comprehensively captures the financial 
repercussions of disaster response, ranging from the tragic costs of human casualties and the operational 
costs of logistics and infrastructure establishment to the critical cost of unmet humanitarian needs. 
By minimizing this combined function, the model seeks to optimize resource allocation and operational 
planning in a manner that is both economically efficient and responsive to human welfare in the face of 
global warming challenges. 

The third component, G3 in Equation (3), consolidates all transportation-related costs across various routes 

and scenarios. This extensive section covers four distinct aspects of logistical movement. It includes the 

costs associated with transporting individuals from affected areas to temporary accommodation centers, 

from affected areas to temporary care facilities, and from affected areas to hospitals. Furthermore, it 

incorporates the costs of transporting commodities from distribution hubs to temporary accommodation 

centers. Each part is calculated based on the distance between facilities and the number of vehicles deployed, 

reflecting the operational expenses of the entire relief distribution network. Finally, G4 in Equation (4) 

encompasses two crucial cost categories. The first part represents the expenditures for establishing both 

temporary care and temporary accommodation facilities. This includes the investment required to set up 

these critical infrastructure points, considering various allocation levels and scenarios. The second part of 

G4 is the total weighted shortage cost of commodities. This directly addresses the second objective function 

of the model, aiming to minimize the unmet demand for essential supplies. The inclusion of the priority 

coefficient ψc within this term ensures that commodities deemed more urgent or critical are prioritized, 

thereby mitigating the impact of shortages on the most vital relief supplies. In essence, the objective function 

comprehensively captures the financial repercussions of disaster response, ranging from the tragic costs of 

human casualties and the operational costs of logistics and infrastructure establishment to the critical cost of 

unmet humanitarian needs. By minimizing this combined function, the model seeks to optimize resource 

allocation and operational planning in a manner that is both economically efficient and responsive to human 

welfare in the face of global warming challenges.  

The model also incorporates a series of constraints to accurately represent the complexities of post-disaster 

humanitarian logistics under global warming impacts as seen above. Constraint (6) governs the flow of 

crucial relief supplies within temporary accommodation centers, stipulating that the total quantity of 

commodities received from distribution hubs, combined with any existing shortages, must meet or exceed 

the specified demand. Complementing this, constraint (7) permits the storage of goods within a temporary 

accommodation center only if that facility has been established. The capacity limitations of healthcare 

infrastructure are addressed by constraint (8), which restricts the number of critically injured individuals 

admitted to any hospital to its maximum patient intake. Similarly, constraint (9) ensures that the outflow of 

commodities from each distribution center does not surpass its designated capacity. Commodity 

requirements for each scenario and time period are formalized by constraint (10), where the demand for each 

type of supply is derived by multiplying its consumption coefficient by the number of affected individuals. 



 

 

Resource-Constrained Multi-objective Optimization Model for Global Warming Resilient Emergency Response and Welfare Networks 

 

 

AJMS/July-Sep 2025/Volume 9/Issue 3                                                                                                   14 

Transportation capabilities are meticulously managed through several constraints. Constraint (11) sets the 

upper limit for transferring non-critically injured individuals from affected zones to temporary care facilities, 

ensuring it remains within the carrying capacity of available vehicles. Analogously, constraint (12) imposes 

a similar vehicle capacity limit for moving displaced persons from affected areas to temporary 

accommodation centers. For critically injured individuals, constraint (13) regulates their transport from 

affected zones to hospitals, again constrained by vehicle capacity. The movement of relief commodities is 

specifically addressed by constraint (14), which dictates that the volume of supplies transported from 

distribution centers to accommodation centers cannot exceed the collective capacity of the vehicles operating 

on these routes.  

   Geographical allocation and facility establishment are also critical. Constraint (15) permits the 
assignment of affected areas to temporary care facilities only when the distance between them falls within 
the facility’s designated coverage range. A parallel condition is applied by constraint (16) for the 
allocation of affected areas to temporary accommodation centers, based on their respective coverage 
distances. Furthermore, constraints (17) and (18) enforce a hierarchical establishment process: backup 
care and accommodation centers, respectively, can only be set up if their corresponding initial facilities 
(at allocation level r = 0) are already in place. Universal access to care and shelter is ensured through 
constraints (19) and (20). Constraint (19) mandates that every affected area, across all allocation levels, 
must be assigned to at least one resilient temporary care center; once assigned to such a facility, further 
allocations to other centers cease. This means each affected area must be linked to either an initial or a 
backup care facility. A similar principle applies to accommodation centers under constraint (20), 
guaranteeing that all affected areas are allocated to at least one resilient temporary accommodation center, 
halting further assignments once this condition is met. The operational flow between facilities is 
contingent on established allocations. Constraint (21) dictates that the movement of individuals between 
an affected area and a temporary care center can only occur if that area has been explicitly assigned to 
that specific care center at a designated allocation level. Likewise, constraint (22) enforces this condition 
for the flow between an affected area and a temporary accommodation center. Prioritization of 
establishment over allocation is emphasized by constraints (23) and (24): a temporary care center must 
be established before any affected area can be allocated to it, and the same rule applies to temporary 
accommodation centers. Finally, full coverage for essential needs is secured. Constraint (25) ensures that 
all critically injured individuals from each affected area are successfully transferred to hospitals. 
Constraint (26) guarantees that all non-critically injured individuals from affected areas are directed to 
temporary care centers. Similarly, constraint (27) ensures that all individuals displaced by global warming 
impacts from each affected area are transported to temporary accommodation centers. The nature of the 
decision variables, whether binary or non-negative integers, is defined by constraints (28) and (29), 
respectively. 

SOLUTION METHODOLOGY 

In this research, a multi-faceted approach is employed to tackle the optimization problem. Three distinct 
method- ologies are utilized for solution generation and analysis. The first method is the Non-Dominated 
Sorting Genetic Algorithm II (NSGA-II). The second strategy involves the epsilon-constraint technique. 
The third approach is a Mod- ified Multi-Objective Particle Swarm Optimization (MMOPSO), which 
integrates elements of the standard Particle Swarm Optimization (PSO) with two localized search 
procedures. 

4.1 NSGA-II Implementation 
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NSGA-II stands as a prominent and widely adopted metaheuristic for multi-objective optimization, often 

serving as a foundational benchmark for evaluating other algorithmic advancements in this domain. Its 

robust performance has led to numerous successful applications in various fields in recent years. 

4.1.1 Chromosomal Encoding 

The model employs a multi-segment chromosomal representation, structured uniquely for each scenario 
and time period. One segment is dedicated to indicating the operational status of temporary care facilities, 
encoded as a binary 

 

 

 

 

 

 Figure 1: 1-dimensional chromosomal representation 

 
 

 

Figure 2: 2-dimensional chromosomal representation for optimized allocation of wounded persons 

 
 

 

Figure 3: 2-dimensional chromosomal representation for the number of vehicles 
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Figure 4: Double-point crossover 
 

  

 

 

 

 

 

 

Figure 5: Mutation operator 

 
Matrix where a value of 1 signifies activation and 0 denotes non-activation. A similar binary matrix 
constitutes another segment, determining the operational status of temporary accommodation centers, 
with 1 for active and 0 for inactive. A separate, two-dimensional chromosomal structure is utilized to 
manage the allocation of injured individuals. This chromosome is divided into three sections, each 
corresponding to the assignment of casualties to temporary care centers, temporary accommodation 
centers, and hospitals. The numerical values within each gene of this representation directly reflect the 
quantity of injured individuals directed to these respective facilities. Furthermore, a third distinct two- 
dimensional chromosome is designed to manage vehicle deployment. This chromosome, also comprising 
three parts, dictates the number of vehicles dispatched from affected areas to temporary care centers, 
temporary accommodation centers, and hospitals. The model distinguishes between three types of 
vehicles, labeled v1, v2, and v3. 
 

4.1.2 Genetic Operators 

The crossover operator is a hybrid process executed in three stages. Initially, two chromosomes are 
chosen at random. Subsequently, a merging point within the chromosome string is randomly selected. 
Finally, the segments of the two chromosomes are exchanged based on the chosen merging point. A 
Double-point crossover technique is specifically applied in this operation. The mutation operator varies 
depending on the chromosome’s dimensionality. For single-dimensional chromosomes, a randomly 
selected gene within a chromosome is replaced with an alternative gene. For two-dimensional 
chromosomes, a row is randomly chosen, and the order of its genes is inverted to introduce variation. 
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Table 1: Parameters of the MMOPSO algorithm. 
 

 

Number of iteration Tmax = 500 
Number of particles Nα = 50 
Inertia weight C0 = 0.6 
Cognitive (local) accelerator constant C1 = 0.6 

 Social (global) accelerator constant C2 = 0.7  
 

4.1.3 Evaluation Criteria 

In the context of the NSGA-II methodology, the effectiveness of each potential solution for the multi-
objective model (equations 1-26) is assessed through a fitness function derived directly from the primary 
objective functions (equations 1 and 2). It is important to note that the ultimate fitness score for each non-
dominated solution within the NSGA-II framework is determined through a specialized non-dominated 
sorting procedure. 

 

4.1.4 Managing Constraints 

The various operational constraints (equations 2-26) embedded within the proposed model are addressed 
through the application of a penalty function approach. Should the NSGA-II algorithm generate a solution 
that violates any of these constraints during its iterative search, a predefined penalty is imposed on the 
corresponding objective function values, effectively discouraging infeasible outcomes. 

 

4.2 Epsilon-Constraint Approach 

The epsilon-constraint method stands as a highly recognized and effective technique for navigating multi-
objective optimization challenges. This methodology is particularly adept at generating the complete 
Pareto Front, which represents the set of optimal trade-off solutions. A pronounced strength of the 
epsilon-constraint method, distinguishing it from other multi-objective optimization techniques like the 
weighted sum approach, lies in its robust performance within non-convex solution spaces, where 
alternative methods often prove less effective. Recent studies have demonstrated its successful 
application across various domains. In essence, this technique operates by optimizing one primary 
objective while simultaneously imposing an upper permissible bound (epsilon) on the values of all other 
objectives. This process is iteratively performed to map out the entire Pareto frontier, such that; 
 

 

 

 

 

4.3 Modified Multi-Objective Particle Swarm Optimization (MMOPSO) 

 

Building upon the Multi-Objective Particle Swarm Optimization (MOPSO) technique initially proposed by 

Moore and Chapman [24] for tackling multi-objective problems, this study introduces a Modified Multi-
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Objective Particle Swarm Optimization (MMOPSO) variant. An interesting characteristics of the MOPSO 

algorithm is its capacity to retain not only the overall Pareto front solutions but also the localized Pareto 

solutions for each individual particle. This mechanism ensures that each particle’s optimal position is 

preserved until a superior solution is discovered. The movement trajectory of particles, encapsulated by their 

velocity vector, is governed by three primary components: an inertia factor, a global accelerator, and a local 

accelerator. The local accelerator is influenced by the particle’s current position and its personal Pareto front, 

effectively representing its historical best location. Inertia is defined by the particle’s velocity from the 

preceding iteration. The global accelerator, conversely, is shaped by the particle’s current position and the 

collective Pareto front of the swarm. For the purpose of this research, the particle movement mechanism is 

formally defined by the following equation:  

 

Zt = (D0 · Zt−1) + (D1 · rand(PPZt − Zt)) + (D2 · rand · (PGZt − Zt)) (31) 

4.4 Heuristic Approach for Facility Location and Allocation 

An alternative heuristic algorithm, developed by Cooper [8], is employed for localized search within 
location-allocation problems. This algorithm is instrumental in determining the optimal placement of 
distribution centers, temporary accommodation centers, and temporary care centers, as well as managing 
the assignment of injured and displaced individuals to these facilities following a disaster. The algorithm 
functions by decomposing the larger problem into 

 
 

 
 

 

 

 

 

  

 

 

 

 

 

 

 



 

 

www.ajms.com 

Repeat steps below 

Step 0: Select m locations using the clustering approach as the initial solution 

Phase 1: Implement the EH algorithm. 

Step 1: Allocate each affected area to the nearest potential location 

Step 2: Look for a pair of potential locations (one location to insert and another location to 

remove) 

Step 3: If this pair of places is found, repeat the steps 1 and 2 until you reach to the stopping 

criterion, or else, there will not be any improvement in the solution and you have to go 

to Phase 2. 

Phase 2: Implement the Cooper algorithm (ALA) 

Step 1: Allocate each affected area to the nearest potential location 

Step 2: Keep constant the current allocation of the affected area and relocate the potential 

locations by solving the m single location problems (using the Weiszfeld method) 

Step 3: Repeat Steps 1 and 2 until there is no further improvement. 

Smaller subsets, subsequently identifying the optimal single-source location for each subset using 
an exact location methodology. The precise optimal location for each facility is computed using 
Weiszfeld’s approach [35], mathematically expressed as: 

 

 

 

 

The iterative adjustment of facility coordinates is further defined by the following equation: 

 

 

 

The convergence criterion for this iterative process is satisfied when the coordinates stabilize between 

successive iterations, as expressed by:  

 

Here, (zi, yi) denotes the spatial coordinates of source i, and vi represents its associated weighting or 

priority level. 

 

4.5 Exchange Heuristic (EH)  
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Σ 

The Exchange Heuristic (EH) algorithm, a local search method developed by Teitz and Bart [34], 
is employed for solving discrete space location-allocation problems. This algorithm systematically 
searches for optimal location pairings in each iteration. In the context of this research, affected 
areas, denoted by d, serve as potential sites for establishing facilities. The spatial separation 
between a candidate location v and an affected area d is given by dist(v, d). A solution, represented 
by Z, signifies the selected facility locations. Each affected area d is assigned to its closest candidate 
location, aiming to minimize dist(v, d). This closest location is identified as ψ1(d). The algorithm 
also requires identifying the second nearest location, termed ψ2(d). For brevity, the distances to the 
first and second nearest locations are referred to as dist1(d) and dist2(d), respectively. Locations 

considered for potential removal are designated as VR (where vr ∈ Z, indicating they are currently 
part of the chosen set of facilities). For every possible pairing of a candidate location for removal 
(vr) and a candidate location for insertion (vi), the potential benefit from such a relocation is 
quantitatively assessed. This relocation benefit is calculated using Equation (35). 

 

 

 

 

 

This calculated benefit comprises three distinct components. The first component, termed Gain(vi)  

 

d∈D 

max{0, [dist1(d)−dist(d, vi)]}, represents the cumulative improvement achieved if vi were to be 
added to the current set of facilities, irrespective of which existing facility might be removed. The 
second component of the equation, Loss(vr) = 
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Σ
d:ψ1(d)=vr 

2 − 1 

Σ 

Figure 7: Map of Warri and Environs, showing flood-prone areas and locations of critical facilities: 
H (Hospi- tals/Medical Posts), R (Relief Distribution Centers), C (Temporary Care Centers), and 
A (Temporary Accommodation Centers) 

[dist (d) dist (d)], quantifies the increase in solution cost or degradation in quality 
resulting from the elimination of facility vr. Finally, the third component, Adjustment(vi, vr) = 

d:[ψ1(d)=vr ]∩[dist(d,vi)<dist2(d)][dist2(d) − max{dist(d, vi), dist1(d)}], captures the intricate combined effect 

of swapping vr with vi on the affected areas that were previously primarily served by vr. 

REAL WORLD APPLICATION 

The city of Warri, located in Delta State, Nigeria, is considered highly prone to recurrent annual 

flooding, particularly during the rainy season. Given its low-lying topography, extensive network of 

creeks and rivers, inadequate drainage infrastructure, and the influence of heavy rainfall and tidal 

surges, flood events can lead to significant and often irreparable damages and losses to infrastructure, 

livelihoods, and lives. The broader Warri and its environs encompass various communities and local 

government areas highly susceptible to inundation. For this case study, the critical period for 

immediate rescue and relief operations following a major flood event is considered to be 72 hours, 

divided into two 36-hour periods for strategic planning 

 Fig.7 illustrates a conceptual map of Warri and its environs, highlighting key areas and the 

distribution of crucial facilities for flood response. This includes existing hospitals and primary 

healthcare centers (H points), designated relief distribution centers (R points), potential locations for 

temporary care centers for the injured and displaced (C points), and sites for establishing temporary 

accommodation centers for evacuees (A points). In line with many disaster management studies, the 

affected areas are delineated based on existing urban and community divisions. For instance, research 

on flood resilience often defines affected areas as specific wards, communities, or local government 

areas that experience significant inundation and require intervention. Therefore, in this research, 

different communities and urban segments within Warri and its environs are considered as demand 

points. Given the diverse and sprawling nature of Warri and its surrounding communities, we consider 

15 distinct, flood-prone areas as affected zones, each representing an associated demand point for aid. 

Table 3 outlines various flood scenarios defined for Warri and its environs, along with their estimated 

probabilities of occurrence. These scenarios reflect different primary drivers of flooding in the region. 

Table 4 illustrates a set of potential locations for the establishment of distribution centers for  

 

Table 3: Different flood scenarios for Warri and Environs, and their estimated probability of 

occurrence. 

 
Flood Scenario Intense Rainfall River Overflow Coastal Surge Combined Event 

 

Severity of Occurrence Moderate High Moderate to High Very High 

Time of Occurrence Day Night Day Night Day Night Day Night 

Probability of Occurrence 0.2500 0.1500 0.1000 0.0800 0.0700 0.0500 0.1800 0.1200 

Percentage of Affected Area 15% 35% 20% 60% 

 

Table 4: Set of potential locations for the establishment of relief distribution centers in Warri and 

Environs. 
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No

. 

 Name of the Area/Facility 

e1 1 Warri City Stadium Grounds 
e2 2 Enerhen Junction Community Hall 
e3 3 Effurun Market Area (Open Space) 
e4 4 PTI Conference Centre (Grounds) 
e5 5 Okere-Urhobo Town Hall 
e6 6 Agbarho Main Market Square 
e7 7 Ugbomro Community Civic Centre 
e8 8 Ekpan Community Field 
e9 9 Osubi Airport Road Industrial Area (Warehouses) 

e1

0 

1
0 

Federal University of Petroleum Resources (FUPRE), Effurun campus (for wider 
area support) 

e1

1 

1
1 

Army Barracks Ground (if accessible for civilian use) 

e1
2 

1
2 

Public School Compounds (e.g., larger ones during holidays) 

relief commodities within Warri and its environs. These locations are strategic points with reasonable 

access and space. These centers can be established at small, medium, or large scales, each possessing 

distinct capacities and associated construction/setup costs. The optimal type and scale of the 

constructed distribution center are determined by the proposed model. Table 5 identifies candidate 

locations for temporary care centers, which are crucial for providing 

 

Table 5: Candidate locations for temporary care centers for flood victims in Warri and Environs. 

 

No.  Name of the Area/Facility 

i1 1 Federal Medical Centre (FMC) Annex (if not directly impacted) 
i2 2 Primary Health Care Center (e.g., within a larger un-flooded community) 
i3 3 Selected Large Church/Mosque Halls 
i4 4 Some Accessible School Gymnasiums/Halls 
i5 5 Community Sports Complexes (e.g., in Ughelli, closer if Warri completely submerged) 

 

immediate medical attention and shelter to injured or vulnerable flood victims. To minimize the time 

spent serving affected individuals, transferring them to existing care centers is possible both directly 

from affected areas and via designated transfer points. Table 6 presents potential locations for 

establishing temporary accommodation centers, 

Table 6: Potential locations for the establishment of temporary accommodation centers for 
displaced persons in Warri and Environs. 

 

No

. 

Name of the Area/Facility No

. 

Name of the Area/Facility 

1 Warri Stadium Complex 5 Ugborikoko Secondary School (large 
compound) 

2 Petroleum Training Institute, Effurun 
(Student Hostels) 

6 Federal University of Petroleum Resources 
(FUPRE) Stadium 

3 Government Technical College, Effurun 
(Grounds/Halls) 

7 PTI Conference Center Hostel 

4 Large Hotel Conference Halls (if leased 
for emergency) 

8 Naval Base Barracks (if allocated for civilian 
use) 
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which are vital for housing displaced populations for extended periods during and after major flood 

events. Table 7 details critical information such as the priority of meeting demand and the associated 

costs for supplying each type of relief commodity essential during flood response operations. It is 

assumed that inventory maintenance costs and supply costs for the post-disaster phase are consistent 

with the pre-disaster phase for planning purposes. 

Table 7: Parameters required for supplying various relief commodities during flood response. 

 

 

It is further assumed that suppliers can utilize only 60% of their normal capacity during the immediate 

post-flood phase due to transportation challenges and disruptions. The flood response network is 

assumed to have access to 50 various transportation vehicles (e.g., trucks, smaller boats for inundated 

areas). Each existing healthcare facility (hospital or well-equipped clinic) is assumed to have a limited 

number of rapid response vehicles or boats (e.g., 5 per facility) for deploying to affected areas for 

initial assessment and patient transfer. 

Table 8: Types of relief distribution centers based on scale, capacity, and establishment cost. 

 

Type of Center Scale Capacity (Units of Aid/Day) Estimated Establishment Cost (103$) 

Type 1 Small 1,500 50 
Type 2 Medium 5,000 150 
Type 3 Large 15,000 400 

 

Table 8 identifies the different types of distribution centers in terms of their scale, operational capacity, 

and estimated establishment costs, which are crucial decision variables for resource allocation. 

Table 9: Parameters related to the establishment of flood relief distribution centers in Warri and 

environs. 

 

 

Commodit

y 

Type of the commodity Priority Volume 

(m3) 

Weight 

(kg) 

Transportation 

cost ($/km/unit) 

Cost of 

shortage 

(103$/unit) 

C1 Food Packs (Dry Rations) 0.95 0.01 5 0.08 0.09 

C2 Bottled Water (5 Litre) 0.98 0.005 5 0.06 0.12 

C3 Mosquito Nets 0.80 0.002 0.5 0.05 0.03 

C4 Hygiene Kits (Soap, 

Sanitary Pads) 

0.75 0.003 1 0.07 0.04 

C5 First Aid Kits 0.90 0.001 0.2 0.10 0.08 

C6 Life Jackets/Buoyancy Aids 0.60 0.05 2 0.12 0.06 

C7 Tarpaulins/Shelter Sheets 0.85 0.03 3 0.09 0.07 
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Table 10: Tuned parameters for the NSGA-II algorithm for flood relief optimization. 

 

Mutation rate Crossover rate Population size Max iterations 
 

0.06 0.5 100 120 

 

The epsilon-constraint method, tailored for multi-objective optimization, is implemented using 

GAMS 24.9.1 software. For metaheuristic approaches, MATLAB R2017a v9.2.0.53 software is 

utilized to code the NSGA-II and MMOPOS algorithms. The computational environment for these 

simulations includes a laptop equipped with 8 GB RAM, an Intel Core i5 7200U processor, and 

running Win10 64bit. The NSGA-II algorithm, a prominent multi-objective evolutionary algorithm, 

is applied with various configurations of its parameters. Table 10 details the optimal configuration of 

parameters derived through calibration and used in this study for the NSGA-II algorithm. 

 

5.1 Performance Evaluation of NSGA-II and MMOPOS Algorithms for Flood Relief 
Optimization 

In this section, to rigorously evaluate the performance of the proposed solution approaches for 
optimizing flood relief operations in Warri and its environs, five key metrics are employed: 

 

Spacing (SM): This metric quantifies the standard deviation of the distances between consecutive 

solutions on the Pareto front [41], indicating the uniformity of the solution spread. 

Mean Ideal Distance (MID): MID measures the convergence rate of the generated Pareto fronts 

towards an ideal point (0, 0) in the objective space [42], reflecting how close the solutions are to the 

optimal trade-off. 

Convergence: Assesses the algorithm’s ability to consistently find solutions that are close to the 
true Pareto front. 

 

Hypervolume Indicator (HV): A comprehensive metric that measures the volume of the objective 

space dominated by the Pareto front, providing insights into both convergence and diversity. 

Statistical Test Analysis: Used to determine the statistical significance of performance 
differences between the algorithms. 

5.2 Spacing Metric (SM)  

The Spacing metric (SM) quantifies the uniformity of the distribution and spread of the non-
dominated set of solutions along the Pareto front. It is calculated using the following formula: 

 

 

Estimated Establishment Cost 

(103$) 

Capacity (Aid Units/Day) Scale Distribution Center 

Type 

120 2500 Small D1 
180 5000 Medium D2 
280 10000 Large D3 
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j 

 

 

 

Here, di represents the Euclidean distance between two adjacent Pareto solutions in the objective 
space, and d¯ denotes the average Euclidean distance among all adjacent solutions. A smaller SM 
value signifies a lower dispersion of Pareto points, indicating a more evenly distributed and well-
spread Pareto front. Ideally, when SM approaches zero, the distances between all adjacent solutions 
on the Pareto front are approximately equal. 

 

5.3 Mean Ideal Distance (MID) 

The Mean Ideal Distance (MID) metric is utilized to assess the proximity of the generated Pareto 
solutions to the ideal point in the objective space [12]. The MID index is calculated as follows: 
 

 

 

 

In this equation, n refers to the total number of Pareto solutions obtained. fji represents the value 

of the j-th objective for the i-th solution in the Pareto frontier. f ∗ denotes the ideal (maximum or 

minimum, depending on the objective type) value of the j-th objective observed among all solutions 
in the Pareto frontier. Rj represents the range of the j-th objective. According to this definition, an 
algorithm that yields a lower value for the MID demonstrates superior convergence and 
performance, as its solutions are closer to the ideal trade-off point. 
 
To thoroughly evaluate the effectiveness of the proposed solution approaches in the context of flood 
relief logistics, the following experimental methodology has been adopted. Initially, a set of ten 
random small and medium-scale test instances, representative of flood scenarios in Warri and its 
environs, are generated. The specific configurations and characteristics of these random instances 
are detailed in Table 11. All these generated instances are then solved using the epsilon-constraint 
method, NSGA-II, and MMOPOS algorithms. The performance evaluation metrics, specifically 
MID, SM, and CPU Time, are computed for all solution approaches across these instances and are 
presented in Table 12. An evaluation of the three algorithms on small and medium-sized problems 
reveals the strong performance of the MMOPSO method when measured by the Mean Ideal 
Distance (MID) metric. MMOPSO achieved an average MID of 3.921, which is a notable 
improvement over NSGA-II’s score of 4.012. Furthermore, its result was highly competitive with 
the ϵ-constraint method (mean MID of 3.889), differing by a marginal 0.032. These findings 
confirm that, based on the MID criterion, the MMOPSO algorithm is superior to NSGA-II. 
   The mean value of SMs for the ϵ-constraint method, NSGA-II, and MMOPOSO are 0.380, 0.395, 
and 0.408, respectively. It can be observed that the mean value of SM for the ϵ-constraint method 
is marginally lower than that of NSGA-II. Furthermore, a difference of 0.028 in the mean MID 
value is noted in favor of the ϵ-constraint method when compared to MMOPOSO. Therefore, based 
on the SM metric, MMOPOSO demonstrates a slightly better performance than NSGA-II. Overall, 
it can be concluded that the results for MID and SM indicate that the MMOPOSO method generally 
performs slightly better than NSGA-II for small and medium-sized problems. As evidenced by 
Table 17, the CPU Time for the ϵ-constraint method remains significantly higher, making it less 
comparable to the more efficient NSGA-II and MMOPOSO algorithms for larger problem 
instances. 
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Table 11: Dimensions of the flood-response instances used to verify the solution approaches. 

 

Table 12: Results of multi-objective performance evaluation metrics for flood-response instance test 

problems. 

 

 
 MID SM  Time (s) MID  SM Time (s)  

1 2.450 0.375  4 2.580  0.380 4  

2 2.290 0.370  35 2.350  0.385 6  

3 2.550 0.205  68 2.610  0.210 8  

4 2.980 0.220  95 3.050  0.230 12  

5 3.320 0.435  310 3.380  0.440 21  

6 4.750 0.400  700 4.850  0.410 28  

7 4.820 0.415  1600 4.930  0.420 38  

8 5.010 0.430  2550 5.080  0.450 45  

9 5.180 0.460  5700 5.450  0.475 70  

10 5.400 0.490  8900 5.850  0.500 105  

Ave 3.805 0.380  2005.9 3.960  0.395 34.7  

MMOPOSO 

MID SM Time(s) 

2.180 0.378 4 

2.280 0.380 6 

2.570 0.210 7 

2.910 0.235 10 

3.320 0.450 14 

4.810 0.410 18 

4.840 0.425 28 

5.040 0.440 30 

5.220 0.470 35 

5.500 0.510 52 

3.875 0.408 19.4 

 

 

Problem 

number 

Problem 

scale 

Affected 

areas 

Temporary accommodation 

centers 

Distribution 

centers 

Healthcare 

facilities 

1 Small 3 1 1 1 

2 Small 4 1 2 2 

3 Small 5 2 2 3 

4 Small 6 2 3 4 

5 Small 7 3 3 5 

6 Medium 8 3 4 6 

7 Medium 9 4 5 6 

8 Medium 11 4 5 7 

9 Medium 12 5 6 7 

10 Medium 13 6 6 8 
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Figure 8: Convergence of the results obtained from NSGA-II and MMOPSO 

 

5.4 Convergence 

The convergence of the algorithm’s solutions across multiple runs is a crucial aspect in assessing 
the overall performance and reliability of the solving algorithms. Consistent convergence confirms 
that the algorithms are performing as expected and that the generated solutions are robust and 
acceptable. Based on this criterion, the algorithm employed to solve the model in this study 
demonstrates suitable performance, yielding acceptable and stable results. A visual representation 
in Figure 8 illustrates how the solution approaches progressively achieve a stable state for the 
problem after a manageable number of iterations. 

 

5.5 The Hyper-Volume Metric 

A prevalent metric for evaluating the quality of approximate Pareto fronts is the hyper-volume 
(HV) indicator, initially developed by Zitzler and Thiele [12]. This metric calculates the volume of 
the objective space that is dominated by a given set of solutions with respect to a predefined 
reference point. A primary advantage of the HV indicator is its ability to concurrently assess two 
critical aspects of performance: convergence to the true Pareto front and the diversity of solutions 
along it. The indicator is formally defined as follows [8]: 
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Here, the term vi represents the specific hyper-rectangle (or volume) bounded by the i-th solution 
and the reference point. In the context of this research, the reference points were determined by 
aggregating the best solutions found by the epsilon-constraint, NSGA-II, and MMOPSO algorithms 
across 100 separate runs on all test instances. A larger resulting HV value corresponds to a more 
effective algorithm. The performance of the MMOPSO and NSGA-II algorithms is compared using 
the hyper-volume metric in Fig. 9. The figure illustrates that MMOPSO achieved a faster rate of 
increase in its HV value, indicating superior performance over NSGA-II. Consequently, the set of 
solutions found by MMOPSO reaches a high-quality, stable state more rapidly than the set 
produced by NSGA-II. 

 

 

 

 

 

 

 

 

 

 

Figure 9: Average hyper volume curve 

 

5.6 Statistical Test Analysis 

To ascertain statistically significant distinctions between the proposed algorithmic solutions, an 
ANOVA (Analysis of Variance) test was employed, as detailed in reference [19]. This section 
specifically utilizes ANOVA to assess the computational efficiency of the methods by comparing 
their respective CPU times. The outcomes of the ANOVA analysis are presented in Table 13. As 
indicated in Table 13, the observed p-value is below 0.05, signifying a statistically significant 
disparity in the average solution times recorded for the MMOPSO and NSGA-II algorithms. 

    To further investigate the nature of these differences, Tukey’s Honestly Significant Difference 
(HSD) post-hoc test was utilized to compare the two solution approaches. This test is applied 
following the rejection of the null hypothesis in the ANOVA, allowing for a detailed examination 
of pairwise differences between group means [20]. Specifically, if the ANOVA test identifies a 
significant overall difference among group means, the Tukey test then proceeds to pinpoint which 
specific pairs of groups exhibit statistically significant differences. 

 

Table 13: Results of analysis of variance for CPU time. 
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Table 14: Results of Tukey tests for differences of mean average CPU time. 

 

Table 14 presents the outcomes of the Tukey’s Honestly Significant Difference (HSD) test. The p-
value, being above 0.05, suggests no statistically significant difference in the mean CPU time 
performance. However, it is observed that the MMOPSO approach demonstrates superior CPU 
time performance, exhibiting a lower mean and standard devia- tion compared to NSGA-II. Based 
on the comprehensive statistical analysis and the results from the multi-objective performance 
evaluation metrics, both NSGA-II and MMOPSO algorithms demonstrate satisfactory 
performance. 

 

5.7 Comparative Analysis 

Given that the specific case study involves a substantial number of components, including 11 
hospitals, 10 relief distribution centers, 4 potential temporary care center sites, and 8 potential 
temporary accommodation center sites, it can be classified as a large-scale optimization problem. 
The computational results obtained from solving this case 
 

Table 15: Results of multi-objective evaluation metrics for case study 

 

 

 

 

 

 

 

 

 

study are detailed below: Table 13 provides the values for the MID (Mean Ideal Distance) and 
SM (Spread Metric) indicators, along with the solution time for the case study. An examination 
of Table 15 reveals that the average MID value for the MMOPSO method is lower than that of 
NSGA-II. This indicates that the MMOPSO algorithm achieved a better performance in terms 
of the MID metric. Similarly, the average SM value for the MMOPSO method is also lower than 
that of NSGA-II, suggesting that MMOPSO outperformed NSGA-II based on the SM metric 
as well. Fig. 10 illustrates the optimal values of the Pareto front. The solutions obtained by the 
NSGA-II approach are represented by blue points, while those from the MMOPSO method are 
shown as red points. The initial five data points correspond to Pareto solutions for small-scale 
problem instances, whereas the subsequent five points represent solutions for medium-scale problems. 
A clear separation or ”gap” is visible between these two sets of solutions in the figure, bifurcating 
the Pareto points into two distinct categories, each comprising five points. This demarcation 
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arises due to the transition from small-scale to medium-scale problem solutions. As depicted 
in Fig. 10, for small-scale problems, the average Pareto frontiers are (2,204.73, 1,234,464,000) 
for MMOPSO and (2,677.75, 1,768,128,000) for NSGA-II, where X and Y denote the first and 
second objective functions, respectively. For medium-scale problems, the average Pareto 
frontiers are (43,844.74, 3,507,770,000) for both MMOPSO and NSGA-II, with X and Y again 
representing the objective functions. Consequently, considering these Pareto frontier values, the 
proposed algorithm demonstrates its applicability and effectiveness in addressing the large-scale 
problem presented by this case study. Fig. 11 displays a comparison of the CPU times. It is evident 
that the CPU time for the epsilon-constraint method exhibits an exponential increase as the 
problem dimensions grow. In contrast, the CPU times for both NSGA-II and MMOPSO 
approaches are considerably less than that of the epsilon-constraint method. Notably, as the 
problem scale expands, the rate at which the CPU time increases for MMOPSO is significantly 
lower than that observed for NSGA-II. 

 

Table 16: Established distribution centers, their optimum capacity and quantity of stored 
inventory. 

 

 Period 1     Period 2  

No. Scale Food Water Tent No. Scale Food Water Tent 

1 Large 200,196 112,453 35,417 1 Large 200,150 300,215 11,705 

2 Large 183,041 120,100 25,710 2 Medium 110,412 115,210 26,547 

3 Medium 121,050 85,210 22,280 3 Medium 98,234 129,111 29,218 

4 Small 14,411 15,211 9523 4 Small 16,210 22,140 4218 

5 Large 225,400 285,547 29,218 5 Large 215,580 301,785 10,810 

6 Medium 130,400 102,110 21,410 6 Small 15,410 20,142 5800 

7 Large 241,180 152,450 29,550 7 Large 200,410 184,465 110,550 

8 Small 11,508 21,580 5544 8 Small 9100 22,120 6517 

9 Large 250,322 100,250 30,025 9 Large 200,173 200,300 71,258 
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Table 17: Established accommodation centers and quantity of stored inventory. 

 

 

 

 

 

 

 

 

 

Figure 12: Allocation of accommodation centers to distribution centers 
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5.8 Mechanism of selecting preferred solution from non-dominated solutions  

The Pareto frontier is comprised of a set of non-dominated solutions, each possessing its own 
unique structure and decision variables. Therefore, a method is necessary to select the most 
suitable preferred solution from this collection of non-dominated options. According to expert 
opinions, the importance of the second objective function is deemed to be twice that of the first 
objective function. This prioritization ensures that the minimization of shortage is given 
precedence over the cost of disaster relief operations. Consequently, the solution that exhibits 
the least amount of shortage is designated as the preferred solution. The preferred solution 
choice among the non-dominated set is Pareto solution No. 8. Since the MMOPSO algorithm 
yielded superior solutions, Pareto solution No. 8 generated by MMOPSO is chosen to 
exemplify the decision variables within a scenario (key fault in the night). Table 16 illustrates 
the decision variables associated with Pareto solution No. 8. It should be noted that Table 16 
accounts for 9 distribution centers. Table 17 presents the established accommodation centers 
and the quantity of stored inventory for both the first and second periods specifically for Pareto 
solution No. 8. It is confirmed that, according to Table 17, 7 accommodation centers were 
established during each period. Fig. 12 visually represents the allocation of accommodation 
centers to various distribution centers for Pareto Solution No. 8. For instance, in the initial 
period, accommodation centers 2, 5, and 3 are assigned to distribution centers 1, 2, and 3, 
respectively. Similarly, in the second period, accommodation centers 2, 5, and 4 are allocated 
to distribution centers 1, 2, and 3, respectively. 

 

CONCLUSION 

This study developed an uncertain multi-objective, multi-commodity, multi-period, and multi-
vehicle location-allocation mixed-integer programming model tailored for the rapid response 
phase following a disaster due to global warming impact. The proposed model encompasses 
five distinct echelons: affected communities, primary distribution hubs, medical facilities 
(hospitals), temporary shelter establishments, and temporary care facilities. To address the 
inherent uncertainties within the model, a probabilistic scenario-based methodology was 
adopted. The optimization strategy focused on two primary objectives: minimizing the overall 
cost associated with facility location and allocation, and concurrently minimizing the unmet 
demand for vital relief supplies. Significant decisions derived from the model include the 
strategic placement of temporary care and accommodation centers, the assignment of affected 
populations to established centers and hospitals, the allocation of distribution centers to 
temporary shelters, the optimized flow of both injured individuals and essential commodities 
across all facilities, the determination of optimal vehicle numbers for inter-facility transport, and 
the management of shortage and inventory levels at each center. The model incorporates a 
comprehensive set of constraints applied across multiple planning periods to ensure practicality 
and effectiveness. The developed model was rigorously evaluated using three distinct solution 
approaches: the epsilon-constraint method, NSGA-II, and MMOPSO. Initially, the performance 
of these algorithms was assessed through a series of random test instances of varying scales. A 
thorough statistical analysis, complemented by multi-objective performance evaluation metrics, 
was conducted to identify the most effective solution approach, ultimately confirming 
MMOPSO as the superior method. Subsequently, the validated model was applied to a real-
world case study centered on the city of Warri and its environs, a region acutely susceptible to 
flooding exacerbated by the effects of global warming. The superior MMOPSO algorithm was 
then exclusively utilized to solve and analyze this specific case study. 

In line with the study’s commitment to social equity, the model inherently prioritizes the most 
vulnerable populations by aiming to minimize shortages of relief supplies. From the set of non-
dominated solutions generated by MMOPSO for the Warri case study, a preferred solution was 
carefully chosen based on expert opinion, emphasizing the critical objective functions relevant 
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to equitable disaster response. The structural details and associated decision variables of this 
preferred solution were then thoroughly examined and discussed in the context of the specific 
challenges faced by Warri. Furthermore, a comprehensive sensitivity analysis was performed on 
crucial model parameters that are prone to variation in real-life disaster scenarios, including the 
probability of flood occurrence and the potential failure rates of humanitarian centers. The 
insights gained from this sensitivity analysis were meticulously scrutinized. Results indicated 
that an increase in the number of affected individuals necessitates an expansion in the 
establishment of accommodation centers. Moreover, a heightened probability of failure for 
temporary care and accommodation centers directly correlates with an increase in overall relief 
costs. 

For future research, several promising avenues are suggested. Incorporating the explicit 
routing of relief distribution vehicles and the evacuation of affected individuals into the problem 
formulation would offer valuable enhancements. Additionally, exploring alternative 
methodologies for modeling parameter uncertainty, such as fuzzy sets or robust optimization 
approaches, could further refine the model’s adaptability to unpredictable disaster environments. 
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