A Note on the Asymptotic Convergence of Bernoulli Distribution A Note on the Asymptotic Convergence of Bernoulli Distribution
Main Article Content
Abstract
This paper presents concepts of Bernoulli distribution, and how it can be used as an approximation of Binomial, Poisson, and Gaussian distributions with a different approach from earlier existing literature. Due to discrete nature of the random variable X, a more appropriate method of the principle of mathematical induction (PMI) is used as an alternative approach to limiting behavior of the binomial random variable. The study proved de Moivre–Laplace theorem (convergence of binomial distribution to Gaussian distribution) to all values of p such that p ≠0 and p ≠1 using a direct approach which opposes the popular and most widely used indirect method of moment generating function.
Article Details
This is an Open Access article distributed under the terms of the Attribution-Noncommercial 4.0 International License [CC BY-NC 4.0], which requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, for noncommercial purposes only.