On the Application of a Classical Fixed Point Method in the Optimization of a Multieffect Evaporator [2010 MSC: 46B25] On the Application of a Classical Fixed Point Method in the Optimization of a Multieffect Evaporator [2010 MSC: 46B25]
Main Article Content
Abstract
This work on classical optimization reveals the Newton’s fixed point iterative method as involved in
the computation of extrema of convex functions. Such functions must be differentiable in the Banach
space such that their solution exists in the space on application of the Newton’s optimization algorithm
and convergence to the unique point is realized. These results analytically were carried as application
into the optimization of a multieffect evaporator which reveals the feasibility of theoretical and practical
optimization of the multieffect evaporator.
Article Details
This is an Open Access article distributed under the terms of the Attribution-Noncommercial 4.0 International License [CC BY-NC 4.0], which requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, for noncommercial purposes only.