On Application of the Fixed-Point Theorem to the Solution of Ordinary Differential Equations On Application of the Fixed-Point Theorem to the Solution of Ordinary Differential Equations
Main Article Content
Abstract
We know that a large number of problems in differential equations can be reduced to finding the solution x to an equation of the form Tx=y. The operator T maps a subset of a Banach space X into another Banach space Y and y is a known element of Y. If y=0 and Tx=Ux−x, for another operator U, the equation Tx=y is equivalent to the equation Ux=x. Naturally, to solve Ux=x, we must assume that the range R (U) and the domain D (U) have points in common. Points x for which Ux=x are called fixed points of the operator U. In this work, we state the main fixed-point theorems that are most widely used in the field of differential equations. These are the Banach contraction principle, the Schauder–Tychonoff theorem, and the Leray–Schauder theorem. We will only prove the first theorem and then proceed.
Article Details
This is an Open Access article distributed under the terms of the Attribution-Noncommercial 4.0 International License [CC BY-NC 4.0], which requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, for noncommercial purposes only.