SPECTRAL THEORY AND FUNCTIONAL CALCULI IN THE REFLEXIVE BANACH SPACES

Main Article Content

Mykola Ivanovich Yaremenko

Abstract

This article establishes the correspondence between the functional calculi for the operator defined on the
Banach spaces and the spectral decomposition. We show that there is a functional calculus on Borel
algebra for each well-bounded operator ABLX 
, which uniquely corresponds with a multiplication
operator on some  , ,  p L   
.

Article Details

How to Cite
Yaremenko, M. I. . (2024). SPECTRAL THEORY AND FUNCTIONAL CALCULI IN THE REFLEXIVE BANACH SPACES. Asian Journal of Mathematical Sciences(AJMS), 8(03). https://doi.org/10.22377/ajms.v8i03.553
Section
Research Article