On Approach to Increase Integration Rate of Elements of an Operational Amplifier Circuit On Approach to Increase Integration Rate of Elements of an Operational Amplifier Circuit
Main Article Content
Abstract
In this paper, we introduce an approach to optimize manufacturing of an operational amplifier circuit based on field-effect transistors. Main aims of the optimization are (i) decreasing dimensions of elements of the considered operational amplifier and (ii) increasing of performance and reliability of the considered field-effect transistors. Dimensions of considered field-effect transistors will be decreased due to manufacture of these transistors framework heterostructure with specific structure, doping of required areas of the heterostructure by diffusion or ion implantation, and optimization of annealing of dopant and/or radiation defects. Performance and reliability of the above field-effect transistors could be increased by optimization of annealing of dopant and/or radiation defects and using inhomogeneity of properties of heterostructure. Choosing of inhomogeneity of properties of heterostructure leads to increasing of compactness of distribution of concentration of dopant. At the same time, one can obtain increasing of homogeneity of the above concentration. In this paper, we also introduce an analytical approach for prognosis of technological process of manufacturing of the considered operational amplifier. The approach gives a possibility to take into account variation of parameters of processes in space and at the same time in space. At the same time, one can take into account nonlinearity of the considered processes.
Article Details
This is an Open Access article distributed under the terms of the Attribution-Noncommercial 4.0 International License [CC BY-NC 4.0], which requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, for noncommercial purposes only.